A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MOF-Derived Hierarchically Porous Carbon with Orthogonal Channels for Advanced Na-Se Batteries. | LitMetric

AI Article Synopsis

  • Na-Se batteries are promising alternatives to lithium-ion batteries due to their high capacity and natural abundance, but face challenges like volume expansion and polyselenide shuttling.
  • The research introduces a novel Se/HPC (Se encapsulated in hierarchically porous carbon) that effectively contains Se, mitigates expansion issues, and enhances charge transfer, resulting in improved electrochemical performance.
  • The study also highlights the beneficial Se─C bond for sodium adsorption and diffusion, suggesting future directions for designing advanced electrode materials using MOF-derived structures.

Article Abstract

Na-Se batteries with high theoretical capacity and rich natural abundance are regarded as desirable substitutes for lithium-ion batteries in the predicament of scarce lithium resources. However, the huge volume expansion of Se and the shuttling effect of polyselenides hinder the development of Na-Se batteries. Herein, the hierarchically porous carbon encapsulated Se (Se/HPC) is successfully prepared by molten Se diffusing into the multi-scaled orthogonal channels of In-MOF derived carbon matrix. The Se/HPC realizes effective nano-confinement of Se phase and accelerates charge transfer during cycling to efficiently buffer the volume expansion of Se, which avoids the shuttling effect and promote electrochemical performance. The Se/HPC achieves admirable electrochemical performance for delivering high capacity of 465 mAh g at a high current density of 50 A g and 533 mAh g after 2800 cycles at 10 A g with 0.003% capacity decay per cycle. Density functional theory calculations demonstrate that the Se─C bond is thermodynamically and kinetically beneficial for the adsorption/diffusion of Na. This work can inspire the further exploration of utilizing the intrinsic crystal structure of MOF to construct a hierarchically porous carbon matrix in situ as carrier for the active Se component, and provide inspiration for future construction of higher-performance electrode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202409766DOI Listing

Publication Analysis

Top Keywords

hierarchically porous
12
porous carbon
12
na-se batteries
12
orthogonal channels
8
volume expansion
8
carbon matrix
8
electrochemical performance
8
mof-derived hierarchically
4
carbon
4
carbon orthogonal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!