AI Article Synopsis

  • Transforming waste plastics into valuable materials can be achieved by creating graphene-based single-atom catalysts using high-density polyethylene via catalytic pyrolysis.
  • The catalyst, featuring dispersed FeNCl sites, shows significantly improved performance compared to similar catalysts without chloride, due to enhanced conductivity and efficiency in activating peroxymonosulfate (PMS).
  • Techniques like Raman and infrared spectroscopy confirm that the catalyst efficiently degrades pollutants through a non-radical oxidation process, making it suitable for continuous water treatment applications.

Article Abstract

Transforming plastics into single-atom catalysts is a promising strategy for upcycling waste plastics into value-added functional materials. Herein, a graphene-based single-atom catalyst with atomically dispersed FeNCl sites (Fe─N/Cl─C) is produced from high-density polyethylene wastes via one-pot catalytic pyrolysis. The Fe─N/Cl─C catalyst exhibited much higher turnover frequency and surface area normalized activity (K) compared with the Fe─N─C catalyst without axial Cl modulation. Both experiments and density functional theory (DFT) computations demonstrated that the axial incorporation of chloride fine-tuned the coordination environment of FeN sites and enhanced peroxymonosulfate (PMS) activation because of improved conductivity and modulated spin state. In situ, Raman, and infrared spectroscopic techniques revealed that PMS is activated by the Fe─N/Cl─C catalyst through an electron transfer process. The formation of a key PMS intermediate at the Fe site effectively elevated the redox capacity of the catalyst surface to realize a fast degradation of diverse pollutants. The non-radical oxidation manner secures high selectivity toward target pollutants and high chemical utilization efficiency. A continuous operation in a column reactor also demonstrated the high efficiency and stability of the (Fe─N/Cl─C + PMS) system for practical water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202415339DOI Listing

Publication Analysis

Top Keywords

transforming plastics
8
electron transfer
8
fe─n/cl─c catalyst
8
catalyst
5
plastics single
4
single atom
4
atom catalysts
4
catalysts peroxymonosulfate
4
peroxymonosulfate activation
4
activation axial
4

Similar Publications

Article Synopsis
  • Transforming waste plastics into valuable materials can be achieved by creating graphene-based single-atom catalysts using high-density polyethylene via catalytic pyrolysis.
  • The catalyst, featuring dispersed FeNCl sites, shows significantly improved performance compared to similar catalysts without chloride, due to enhanced conductivity and efficiency in activating peroxymonosulfate (PMS).
  • Techniques like Raman and infrared spectroscopy confirm that the catalyst efficiently degrades pollutants through a non-radical oxidation process, making it suitable for continuous water treatment applications.
View Article and Find Full Text PDF

A Decade of Transforming Journey with IJPS.

Indian J Plast Surg

December 2024

Department of Plastic and Reconstructive Surgery, A. J. Institute of Medical Sciences and Research Centre, Mangalore, Karnataka, India.

View Article and Find Full Text PDF

Orchestrated desaturation reprogramming from stearoyl-CoA desaturase to fatty acid desaturase 2 in cancer epithelial-mesenchymal transition and metastasis.

Cancer Commun (Lond)

December 2024

Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts, USA.

Background: Adaptative desaturation in fatty acid (FA) is an emerging hallmark of cancer metabolic plasticity. Desaturases such as stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) have been implicated in multiple cancers, and their dominant and compensatory effects have recently been highlighted. However, how tumors initiate and sustain their self-sufficient FA desaturation to maintain phenotypic transition remains elusive.

View Article and Find Full Text PDF

Guided monocyte fate to FRβ/CD163 S1 macrophage antagonises atopic dermatitis via fibroblastic matrices in mouse hypodermis.

Cell Mol Life Sci

December 2024

Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.

Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1.

View Article and Find Full Text PDF

The plasticity of epithelial cells and its potential in the induced differentiation of gastric cancer.

Cell Death Discov

December 2024

Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.

Cell plasticity refers to the deviation of cells from normal terminal differentiation states when faced with environmental and genetic toxic stresses, resulting in the phenomenon of transforming into other cell or tissue phenotypes. Unlocking phenotype plasticity has been defined as a hallmark of malignant tumors. The stomach is one of the organs in the body with the highest degree of self-renewal and exhibits significant cell plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!