Improving the interface characteristics between the hole-transport layer (HTL) and perovskite absorber layer is crucial for achieving maximum efficiency in inverted perovskite solar cells (PSCs). This paper presents an effective functional compensation layer (FCL) composed of benzothiophene derivatives, particularly 5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (TFMBTA); this layer is introduced between the MeO-2PACz HTL and perovskite absorber layer to improve the interfacial characteristics between them. This FCL improves charge transfer, hole extraction, and perovskite deposition by improving the surface morphology of the HTL and optimizing the energy level alignment. The functional groups of TFMBTA effectively passivate perovskite defects. As a result, the introduction of the TFMBTA FCL markedly reduces non-radiative recombination at the interface between the HTL and perovskite layer. The MeO-2PACz-based PSCs with the FCL demonstrated an impressive peak power conversion efficiency of 23.85%, accompanied by substantially enhanced open-circuit voltage (Voc), fill factor (FF), and long-term stability. Similarly, introducing the TFMBTA FCL between the PEDOT:PSS HTL and the perovskite layer enhanced both the stability and efficiency of PSCs, demonstrating the universality of FCLs across different types of HTLs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202410369 | DOI Listing |
Small
January 2025
Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea.
Improving the interface characteristics between the hole-transport layer (HTL) and perovskite absorber layer is crucial for achieving maximum efficiency in inverted perovskite solar cells (PSCs). This paper presents an effective functional compensation layer (FCL) composed of benzothiophene derivatives, particularly 5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (TFMBTA); this layer is introduced between the MeO-2PACz HTL and perovskite absorber layer to improve the interfacial characteristics between them. This FCL improves charge transfer, hole extraction, and perovskite deposition by improving the surface morphology of the HTL and optimizing the energy level alignment.
View Article and Find Full Text PDFNat Commun
December 2024
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.
Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.
View Article and Find Full Text PDFACS Nano
December 2024
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China.
Perovskite/organic tandem solar cells (PO-TSCs) have recently attracted increasing attention due to their high efficiency and excellent stability. The interconnecting layer (ICL) is of great importance for the performance of PO-TSCs. The charge transport layer (CTL) and the charge recombination layer (CRL) that form the ICL should be carefully designed to enhance charge carrier extraction and promote charge carrier recombination balance from the two subcells.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
Carbon-based hole transport layer (HTL)-free perovskite solar cells (C-PSCs) receive a lot of attention because of their simplified preparation technology, low price, and good hydrophobicity. However, the Schottky junction formed at the interface between perovskite and carbon poles affects the photogenerated carrier extraction and conversion efficiency. In this paper, 4-trifluoromethyl-2-pyridinecarboxylic acid (TPCA) is used to modify the perovskite films.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur 2012, Bangladesh.
The main focus of this research is to explore the properties and photovoltaic application of AgCdF, and hence, initially, the CASTEP software was used in this study to assess the structural, optical, mechanical, and electrical characteristics of the AgCdF perovskite absorber layer within the context of the density functional theory (DFT) method. AgCdF resulting from the structural research is confirmed to be chemically and thermodynamically stable by the estimated tolerance factor and formation enthalpy. According to the band structure analysis, AgCdF is an indirect band gap semiconductor with a band gap of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!