A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Asymmetric Microgels with Tunable Morphologies by Assembly-Guided Polymerization of Liquid Crystalline Monomers. | LitMetric

AI Article Synopsis

  • Understanding microgel morphology is key for enhancing their functions in various applications, but traditional methods are often limited and low in efficiency.
  • A new bottom-up approach is introduced for creating unique non-spherical microgels from N-vinylcaprolactam using a specific liquid crystalline comonomer, allowing for more diverse shapes like multilobe, dumbbell, and raspberry forms.
  • By manipulating factors like LCM addition time, temperature, and solvent ratios, researchers can fine-tune microgel shapes, which are characterized using microscopy and light scattering techniques, and they show potential in solubilizing hydrophobic compounds like Nile Red.

Article Abstract

Understanding and controlling the morphology of microgels is crucial for optimizing their properties and functions in diverse areas of application. The fabrication of microgels that exhibit both structural and chemical anisotropy using a template-free approach faces significant challenges. Existing approaches toward such microgels are typically limited to templating methods with low throughput. Here, an alternative bottom-up approach is developed for producing non-spherical N-vinylcaprolactam (VCL) based microgels through semi-batch precipitation polymerization, incorporating a functional comonomer with a liquid crystalline (LC) moiety. 4-methoxybenzoic acid 4-(6-acryloyloxy-hexyloxy)phenyl ester (LCM) is used as the LC comonomer. The resulting morphology of those microgels is tuned to multilobe-, dumbbell-, and raspberry-like shapes. The different morphologies are obtained by varying the addition time of LCM, temperature, solvent ratio, and monomer ratio. The microgel morphologies are characterized by (cryogenic) transmission and scanning electron microscopy. The thermoresponsiveness is investigated by dynamic light scattering (DLS), while the incorporation of LCM into the microgel structure is determined via H-NMR and Raman spectroscopy. The experimental data indicate that adjusting reaction conditions enables the fabrication of microgels with various morphologies. Finally, their capability to solubilize hydrophobic substances is demonstrated by successfully facilitating the uptake of the hydrophobic dye Nile Red (NR).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202410502DOI Listing

Publication Analysis

Top Keywords

morphology microgels
8
fabrication microgels
8
microgels
6
asymmetric microgels
4
microgels tunable
4
morphologies
4
tunable morphologies
4
morphologies assembly-guided
4
assembly-guided polymerization
4
polymerization liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!