Diatomic catalysts (DACs) present unique opportunities for harnessing ensemble effects between adjacent metal atoms, thus, expanding the properties of single-atom catalysts (SACs). However, the precise preparation and characterization of this type of catalyst remains challenging. Following a precursor-preselected strategy, here, we report the synthesis of a carbon nitride-supported Pd-DAC, which achieves an excellent yield of 92% for photocatalytic water-donating transfer hydrogenation of 4-vinylphenol to 4-ethylphenol, far exceeding that of other metal species, including Pd single atoms (47%) and nanoparticles (1%). Combining transmission electron microscopy with standardized machine learning atom-detection methods confirms the stabilization of a substantial fraction of dimeric Pd species over carbon nitride. Density functional theory (DFT) simulations associate the outstanding performance of Pd-DAC to enhanced substrate activation in the hydrogenation path compared to Pd-SAC. The work provides criteria for DACs characterization and demonstrates a transfer hydrogenation application that is sustainable and eco-friendly over conventional hydrogenation technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c15235 | DOI Listing |
Natl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
A new aggregation-induced emission (AIE) luminogen is obtained by dimerizing acridin-9(10H)-one (Ac), an aggregation-caused quenching (ACQ) effect monomer via an N─N bond and forming 9H,9'H-[10,10'-biacridine]-9,9'-dione (DiAc) with D symmetry. The quenching of DiAc in solution is ascribed to the enhanced basicity promoting hydrogen bonding and then a hydrogen abstraction (HA) reaction and/or an unallowed transition in frontier orbitals with the same symmetry facilitating intersystem crossing. It is found that emissive Ac is one product of the non-emissive DiAc solution in the HA reaction activated by UV irradiation.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.
The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
Electrocatalytic nitrate reduction reaction (NORR) to harmless nitrogen (N) presents a viable approach for purifying NO-contaminated wastewater, yet most current electrocatalysts predominantly produce ammonium/ammonia (NH/NH) due to challenges in facilitating N-N coupling. This study focuses on identifying metal catalysts that preferentially generate N and elucidating the mechanistic origins of their high selectivity. Our evaluation of 16 commercially available metals reveals that only Pb, Sn, and In demonstrated substantial N selectivity (79.
View Article and Find Full Text PDFLuminescence
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
In this study, a sensitive and selective spectrofluorimetric method was developed for the determination of the antidiabetic drug nateglinide based on its reaction with the xanthene dye acid red 87 (AR87). A fluorescence quenching process was observed for the AR87 at 545 nm upon the addition of nateglinide, which was exploited for the quantitative analysis. The reaction mechanism was investigated using quantum mechanical calculations suggesting a transfer between the electron-rich AR87 and the electron-deficient nateglinide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!