Formamidinium lead triiodide (FAPbI) perovskite quantum dot (PQD) are promising candidate for high-performing quantum dot photovoltaic due to its narrow bandgap, high ambient stability, and long carrier lifetime. However, the carrier transport blockage and nonradiative recombination loss, originating from the high-dielectric ligands and defects/trap states on the FAPbI PQD surface, significantly limit the efficiency and stability of its photovoltaic performance. In this work, through exploring dual-site molecular ligands, namely 2-thiophenemethylammonium iodide (2-TM) and 2-thiopheneethylammonium iodide (2-TE), a dual-phase synergistic ligand exchange (DSLE) protocol consisting of both solution-phase and solid-state ligand engineering is demonstrated. The DSLE strategy effectively replaces the native long insulating ligands and simultaneously passivate surface defects in hybrid FAPbI PQDs, leading to enhanced electronic coupling for efficient charge transport. Consequently, the FAPbI PQD solar cell based on DSLE strategy achieves a notable enhanced efficiency from 15.43% to 17.79% (2-TM) and 18.21% (2-TE), respectively. Besides, both 2-TM and 2-TE engineered devices exhibit enhanced stability, maintaining over 80% of its initial efficiency after aging in ambient environment (20-30% humidity, 25 °C) for over 1400 h. It believes these findings will provide a new protocol to precisely regulate the surface chemistry of hybrid PQDs toward high-performance optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202417346 | DOI Listing |
Nanotechnology
January 2025
Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.
Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.
View Article and Find Full Text PDFNanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFTauopathies, a group of neurodegenerative disorders, are characterized by the abnormal aggregation of tau proteins into neurofibrillary tangles (NFTs), driving synaptic dysfunction, neuronal loss, and disease progression through tau aggregate propagation. Graphene quantum dots (GQDs) functionalized with - cysteine ( -GQDs) have shown promise in inhibiting tau aggregation and transmission π-π stacking and electrostatic interactions with tau proteins. However, the non-specific binding of GQDs to various proteins in the physiological environment, such as serum albumin, limits their clinical translation.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Chongqing College of Mobile Communication, Chongqing, 401520, China.
In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.
View Article and Find Full Text PDFNat Mater
January 2025
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!