AI Article Synopsis

  • New quinizarin-Au(I)-NHC complexes were developed and fully characterized, demonstrating effective growth inhibition in HeLa cervical cancer cells with IC values between 2.4 and 5.3 μM.
  • Cytotoxicity studies showed that complex 2 b could overcome anthracycline resistance in K562 leukemia cells and worked synergistically with doxorubicin against both sensitive and resistant leukemia cells.
  • The study highlighted that localizing these complexes to mitochondria was crucial for their antiproliferative effects and ability to counteract drug resistance, rather than just overall cytotoxicity.

Article Abstract

New, asymmetric quinizarin-Au(I)-NHC complexes were designed, isolated, and fully characterised including by single crystal X-ray crystallography. Cytotoxicity studies showed effective growth inhibition in HeLa cervical cancer cells with IC values ranging from 2.4 μM to 5.3 μM. The successful cellular uptake was evidenced by X-ray fluorescence imaging on cryo-preserved whole HeLa cells and the sub-cellular localisation was monitored by live-cell fluorescence microscopy. Notably, complex 2 b showed circumvention of acquired anthracycline resistance in K562 leukaemia cells as well as synergistic activity with doxorubicin against both wild-type and anthracycline-resistant Nalm-6 leukaemia cells. Interestingly, sub-cellular localisation towards mitochondria proved to be more important than the compounds' overall cytotoxicity for potent antiproliferative activity and to achieve effective resistance circumvention.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202404147DOI Listing

Publication Analysis

Top Keywords

leukaemia cells
12
synergistic activity
8
sub-cellular localisation
8
cells
5
quinizarin goldi
4
goldi n-heterocyclic
4
n-heterocyclic carbene
4
carbene complexes
4
complexes synergistic
4
activity
4

Similar Publications

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) and RNA N⁶-methyladenosine (m A) have been linked to leukemia drug resistance. However, whether and how lncRNAs and m A coordinately regulate resistance remain elusive. Here, we show that many differentially expressed lncRNAs enrich m A, and more lncRNAs tend to have higher m A content in CML cells resistant to tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

The significance of endogenous immune surveillance in acute lymphoblastic leukemia (ALL) remains controversial. Using clinical B-ALL samples and a novel mouse model, we show that neoantigen-specific CD4+ T cells are induced to adopt type-1 regulatory (Tr1) function in the leukemia microenvironment. Tr1s then inhibit cytotoxic CD8+ T cells, preventing effective leukemia clearance.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) that is relapsed and/or refractory post-allogeneic hematopoietic cell transplantation (HCT) is usually fatal. In a prior study, we demonstrated that AML relapse in high-risk patients was prevented by post-HCT immunotherapy with Epstein-Barr virus (EBV)-specific donor CD8 T cells engineered to express a high-affinity Wilms Tumor Antigen 1 (WT1)-specific T-cell receptor (TTCR- C4). However, in the present study, infusion of EBV- or Cytomegalovirus (CMV)-specific T did not clearly improve outcomes in fifteen patients with active disease post-HCT.

View Article and Find Full Text PDF

FLT3 mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Significant advancements have been made in developing FLT3 inhibitors (FLT3Is), such as quizartinib, which have improved treatment outcomes in both newly diagnosed and relapsed/refractory AML. Resistance to FLT3Is remains a major clinical challenge, driven by diverse mechanisms including FLT3 point mutations, cellular escape pathways, and the influence of the bone marrow microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!