A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unravelling the Epitaxial Growth Mechanism of Hexagonal and Nanoporous Boron Nitride: A First-Principles Microkinetic Model. | LitMetric

AI Article Synopsis

  • The study uses density functional theory and microkinetic modeling to analyze the growth of hexagonal boron nitride (hBN) on a ruthenium surface, focusing on the process of chemical vapor deposition (CVD).
  • Four main stages of the growth process are detailed: adsorption and deprotonation of borazine, dimerization, stabilization of larger borazine polymers, and the formation of nanoporous intermediates.
  • Findings highlight the importance of the deprotonation sequence in nanostructure formation and provide insights for producing high-quality hBN monolayers, aligning well with experimental data for temperature variations and precursor exposure.

Article Abstract

Understanding the chemical and physical mechanisms at play in 2D materials growth is critical for effective process development of methods such as chemical vapor deposition (CVD) as a toolbox for processing more complex nanostructures and 2D materials. A combination of density functional theory and microkinetic modeling is employed to comprehensively investigate the reaction mechanism governing the epitaxial growth of hexagonal boron nitride (hBN) on Ru(0001) from borazine. This analysis encompasses four key stages prior to the formation of the complete hBN overlayer: (i) adsorption, diffusion and deprotonation of borazine, (ii) dimerization and microkinetic modeling (iii) stability of larger borazine polymers and (iv) formation of nanoporous intermediates. In doing so, the exact deprotonation sequence is followed for the first time, illustrating its crucial role for the formation of nanostructures. These findings not only provide insights into the epitaxial growth of hBN and the stability of intermediate overlayers, which are strongly dependent on surface temperature and the amount of precursor exposures, they offer also crucial guidance for producing high-quality hBN monolayers with regular patterns or functionalisation. Importantly, these results align with experimental data and provide a detailed model which explains temperature-dependent, in-situ surface measurements during hBN growth on Ru and other substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202405404DOI Listing

Publication Analysis

Top Keywords

epitaxial growth
12
boron nitride
8
microkinetic modeling
8
growth
5
hbn
5
unravelling epitaxial
4
growth mechanism
4
mechanism hexagonal
4
hexagonal nanoporous
4
nanoporous boron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!