Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a leading candidate for high-voltage, cobalt-free cathodes, spinel LiNiMnO (LNMO) oxide is highly attractive for next-generation lithium-ion batteries. However, the instability of cation-oxygen bonds (especially Mn-O) and the adverse two-phase transition of LNMO result in rapid crystal collapse during cycling, thus limiting its practical deployment. To address these issues, herein we exploit the differences in miscibility between dopants and the spinel matrix to embed high-entropy doped microregions (HEDRs, 5-15 nm in size) within the spinel. This is achieved by incorporating Zr, Nb, and Mo and Eu into the 16- and 16-site of LNMO, respectively. Owing to the synergistic interactions among high-entropy constituents, robust cation-oxygen bonds are established inside these HEDRs, which significantly mitigate Mn dissolution and oxygen loss. Furthermore, the embedment of HEDRs in the spinel transforms the two-phase transition with large lattice strain into a more favorable solid-solution reaction, thereby reducing the stress and crack formation over the entire particle. Consequently, these HEDRs serve as "structural stabilizers", endowing the HEDRs-embedded LNMO with superior structural stability. Capacity retention as high as 80% is achieved by the resultant Ah-level laminated pouch cells over 300 cycles at 0.5C, representing the best electrochemical performance of the 5 V spinel cathode reported to date. This research displays that integrating a heterogeneously distributed microstructure, characterized by a high-entropy composition, can highly enhance the stability of LNMO, which diverges from traditional homogeneous element doping and is projected to be applicable to other intercalation-type cathodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c16342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!