Oxadiazole compounds are of great interest because they have a range of biological activities ranging from antioxidants to anticancer agents. Against this background, we wanted to demonstrate the antioxidant, enzyme inhibitory, and anticancer effects of 5(4-hydroxyphenyl)-2-(N-phenylamino)-1,3,4-oxadiazole (Hppo). Antioxidant abilities were measured through free radical scavenging and reducing power tests. Enzyme inhibitory effects were studied by cholinesterases, tyrosinase, amylase, and glucosidase. The anticancer effect was tested on pancreatic cancer cell lines (PANC-1, CRL-169) and on HEK293 cell lines. The compound showed significant antioxidant activity (particularly in the CUPRAC (cupric acid-reducing antioxidant capacity) assay) and enzyme inhibitory properties (particularly glucosidase inhibition). In the anticancer test, the compound showed strong anticancer activity in pancreatic cancer with apoptotic signaling pathways. These results were confirmed by molecular modeling and bioinformatics tools. Thus, our findings can provide novel and versatile compounds for the development of multidirectional drugs in the pharmaceutical industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.70038 | DOI Listing |
Front Pharmacol
December 2024
Department of Biosciences, Integral University, Lucknow, India.
Introduction: Diabetic retinopathy is a significant microvascular disorder and the leading cause of vision impairment in working-age individuals. Hyperglycemia triggers retinal damage through mechanisms such as the polyol pathway and the accumulation of advanced glycation end products (AGEs). Inhibiting key enzymes in this pathway, aldose reductase (AR) and sorbitol dehydrogenase (SD), alongside preventing AGE formation, may offer therapeutic strategies for diabetic retinopathy and other vascular complications.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.
View Article and Find Full Text PDFThe 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) family of proteins are bifunctional enzymes that are of clinical relevance because of their roles in regulating glycolysis in insulin sensitive tissues and cancer. Here, we sought to express recombinant PFKFB2 and develop a robust protocol to measure its kinase activity. These studies resulted in the unexpected finding that bacterially expressed PFKFB2 is phosphorylated on Ser483 but is not a result of autophosphorylation.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.
2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!