Ependymoma is the third most common brain tumour of childhood and historically has posed a major challenge to both pediatric and adult neuro-oncologists. Ependymoma can occur anywhere in the central nervous system throughout the entire age spectrum. Treatment options have been limited to surgery and radiation, and outcomes have been widely disparate across studies. Indeed, these disparate outcomes have rendered it extraordinarily difficult to compare studies and to truly understand which patients are low and high-risk. Over the past two decades there have been tremendous advances in our understanding of the biology of ependymoma, which have changed risk stratification dramatically. Indeed, it is now well accepted that ependymoma comprises multiple distinct entities, whereby each compartment (supratentorial, posterior fossa, spinal) are distinct, and within each compartment there exist unique groups. The driver events, demographics and response to treatment vary widely across these groups and allow for a better classification of thee disease. Herein, we review the advances in the molecular stratification of ependymoma including how an improved classification and risk stratification allows for more precise therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-024-04923-9 | DOI Listing |
Biosens Bioelectron
January 2025
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:
RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.
View Article and Find Full Text PDFGenet Test Mol Biomarkers
January 2025
Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.
Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Li-rich cation-disordered rocksalt (DRX) materials introduce new paradigms in the design of high-capacity Li-ion battery cathode materials. However, DRX materials show strikingly sluggish kinetics due to random Li percolation with poor rate performance. Here, we demonstrate that Li stuffing into the tetrahedral sites of the Mn-based rocksalt skeleton injects a novel tetrahedron-octahedron-tetrahedron diffusion path, which acts as a low-energy-barrier hub to facilitate high-speed Li transport.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFPurpose: To provide updated guidance regarding neoadjuvant chemotherapy (NACT) and primary cytoreductive surgery (PCS) among patients with stage III-IV epithelial ovarian, fallopian tube, or primary peritoneal cancer (epithelial ovarian cancer [EOC]).
Methods: A multidisciplinary Expert Panel convened and updated the systematic review.
Results: Sixty-one studies form the evidence base.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!