Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single cell ATAC-seq (scATAC-seq) experimental designs have become increasingly complex, with multiple factors that might affect chromatin accessibility, including genotype, cell type, tissue of origin, sample location, batch, etc., whose compound effects are difficult to test by existing methods. In addition, current scATAC-seq data present statistical difficulties due to their sparsity and variations in individual sequence capture. To address these problems, we present a zero-adjusted statistical model, Probability model of Accessible Chromatin of Single cells (PACS), that allows complex hypothesis testing of accessibility-modulating factors while accounting for sparse and incomplete data. For differential accessibility analysis, PACS controls the false positive rate and achieves a 17% to 122% higher power on average than existing tools. We demonstrate the effectiveness of PACS through several analysis tasks, including supervised cell type annotation, compound hypothesis testing, batch effect correction, and spatiotemporal modeling. We apply PACS to datasets from various tissues and show its ability to reveal previously undiscovered insights in scATAC-seq data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-55580-5 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701134 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!