A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS. | LitMetric

Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS.

Nat Commun

Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Published: January 2025

Single cell ATAC-seq (scATAC-seq) experimental designs have become increasingly complex, with multiple factors that might affect chromatin accessibility, including genotype, cell type, tissue of origin, sample location, batch, etc., whose compound effects are difficult to test by existing methods. In addition, current scATAC-seq data present statistical difficulties due to their sparsity and variations in individual sequence capture. To address these problems, we present a zero-adjusted statistical model, Probability model of Accessible Chromatin of Single cells (PACS), that allows complex hypothesis testing of accessibility-modulating factors while accounting for sparse and incomplete data. For differential accessibility analysis, PACS controls the false positive rate and achieves a 17% to 122% higher power on average than existing tools. We demonstrate the effectiveness of PACS through several analysis tasks, including supervised cell type annotation, compound hypothesis testing, batch effect correction, and spatiotemporal modeling. We apply PACS to datasets from various tissues and show its ability to reveal previously undiscovered insights in scATAC-seq data.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55580-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701134PMC

Publication Analysis

Top Keywords

scatac-seq data
12
chromatin accessibility
8
cell type
8
hypothesis testing
8
pacs
5
depth-corrected multi-factor
4
multi-factor dissection
4
dissection chromatin
4
scatac-seq
4
accessibility scatac-seq
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!