A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A text classification method by integrating mobile inverted residual bottleneck convolution networks and capsule networks with adaptive feature channels. | LitMetric

AI Article Synopsis

  • This study introduces MBConv-CapsNet, a new model for large-scale text classification that combines Mobile Inverted Bottleneck Convolutional Networks and Capsule Networks for better performance.
  • The model effectively processes text by considering local and global information and transforming the original text data into a more efficient feature representation.
  • Experimental results show that MBConv-CapsNet outperforms existing methods in various classification tasks, highlighting its improved ability to manage semantic information while minimizing noise.

Article Abstract

This study proposes a novel text classification model, MBConv-CapsNet, to address large-scale text data classification issues in the Internet era. Integrating the advantages of Mobile Inverted Bottleneck Convolutional Networks and Capsule Networks, this model comprehensively considers text sequence information, word embeddings, and contextual dependencies to capture both local and global information about the text effectively. It transforms from the original text matrix to a more compact and representative feature representation. A Capsule Network is designed to adaptively adjust the importance of different feature channels, including N-gram convolutional layers, selective kernel network layers, primary capsule layers, convolutional capsule layers, and fully connected capsule layers, aiming to enhance the model's ability to capture semantic information of text across different feature channels. The use of the sparsemax function instead of the softmax function for dynamic routing within the Capsule Network directs the network's focus more on capsules contributing significantly to the final output, reducing the impact of noise and redundant information, and further improving the classification performance. Experimental validation on multiple publicly available text classification datasets demonstrates significant performance improvements of the proposed method in binary classification, multi-classification, and multi-label text classification tasks, exhibiting better generalization capability and robustness.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85237-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701079PMC

Publication Analysis

Top Keywords

text classification
16
feature channels
12
capsule layers
12
text
9
mobile inverted
8
networks capsule
8
capsule networks
8
capsule network
8
capsule
7
classification
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!