AI Article Synopsis

  • Alzheimer's disease (AD) is characterized by cognitive decline and specific brain changes, necessitating the development of effective animal models to study it.
  • Current transgenic mouse models have limitations in capturing the full complexity of human AD pathology and their interactions.
  • The novel APP/PS1-TauP301L-Adeno mouse model enhances understanding of AD mechanisms by inducing significant pathological symptoms, revealing the exacerbating effect of severe reactive astrogliosis on amyloid-β plaques and neurofibrillary tangles.

Article Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features, including amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis. Developing effective diagnostic, preventative, and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease. Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD. Additionally, these models are limited in their ability to elucidate the interplay among amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation. In this study, we introduce a novel AD mouse model (APP/PS1-TauP301L-Adeno mice) designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms. Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAV -EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice. Three months post-injection, these mice exhibited pronounced astrogliosis, substantial amyloid-β plaque accumulation, extensive neurofibrillary tangles, accelerated neuronal loss, elevated astrocytic GABA levels, and significant spatial memory deficits. Notably, these pathological features were less severe in AAV-TauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis. These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-β plaque and neurofibrillary tangle-associated pathology. The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.

Download full-text PDF

Source
http://dx.doi.org/10.24272/j.issn.2095-8137.2024.257DOI Listing

Publication Analysis

Top Keywords

reactive astrogliosis
24
neurofibrillary tangles
16
mouse model
12
novel mouse
8
alzheimer's disease
8
amyloid-β plaques
8
plaques neurofibrillary
8
tangles reactive
8
severe reactive
8
app/ps1 mice
8

Similar Publications

Aluminium is a common metallic toxicant that easily penetrates the brain and exerts severe pathological effects e.g., oxidative stress, inflammation and neurodegeneration.

View Article and Find Full Text PDF

Retinal glia in myopia: current understanding and future directions.

Front Cell Dev Biol

December 2024

Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Myopia, a major public health problem, involves axial elongation and thinning of all layers of the eye, including sclera, choroid and retina, which defocuses incoming light and thereby blurs vision. How the various populations of glia in the retina are involved in the disorder is unclear. Astrocytes and Müller cells provide structural support to the retina.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by cognitive decline and specific brain changes, necessitating the development of effective animal models to study it.
  • Current transgenic mouse models have limitations in capturing the full complexity of human AD pathology and their interactions.
  • The novel APP/PS1-TauP301L-Adeno mouse model enhances understanding of AD mechanisms by inducing significant pathological symptoms, revealing the exacerbating effect of severe reactive astrogliosis on amyloid-β plaques and neurofibrillary tangles.
View Article and Find Full Text PDF

Astrogliosis and glial scar in ischemic stroke - focused on mechanism and treatment.

Exp Neurol

December 2024

Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. Electronic address:

Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent.

View Article and Find Full Text PDF

Implication of the enteric glia in the IBS-like colonic inflammation associated with endometriosis.

BMC Womens Health

December 2024

Department of Basic Sciences - Physiology Division, Ponce Health Sciences University, Ponce Research Institute, PO Box 7004, Ponce, 00732-7004, PR, Puerto Rico.

Background: Endometriosis is a complex gynecological disorder characterized by the ectopic growth of endometrial tissue. Symptoms of endometriosis are known to impair the quality of life of patients, and among these are found dysmenorrhea, chronic pelvic pain, and gastrointestinal (GI) issues. GI issues such as painful bowel movements, bloating and constipation or diarrhea, are one of the common reasons for misdiagnosis with irritable bowel syndrome (IBS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!