Beneficial root endophytic fungi induce systemic responses, growth promotion, and induced systemic resistance (ISR) in colonized host plants. The soil application of chitin, a main component of fungal cell walls, also systemically induces disease resistance. Therefore, chitin recognition and its downstream signaling pathway mediate ISR triggered by beneficial fungi colonizing the root. The present study compared systemic disease resistance and transcriptional responses induced by Trichoderma, a representative beneficial root endophytic fungus, and chitin in Arabidopsis. Significant plant growth promotion was observed under root colonization by the three beneficial fungi tested: Trichoderma atroviride, Serendipita indica, and S. vermifera. Only T. atroviride and S. indica triggered ISR against the necrotrophic fungal pathogen Alternaria brassicicola. Induced systemic resistance triggered by T. atroviride was compromised in the chitin-receptor mutant, whereas systemic resistance caused by the soil application of chitin was not. A transcriptome ana-lysis demonstrated that chitin-regulated genes were mostly shared with those regulated by T. atroviride; however, many of the latter were specific. The commonly enriched gene ontologies for these genes indicated that the T. atroviride inoculation and chitin application systemically controlled similar transcriptional responses, mainly associated with cell wall functions. Therefore, Trichoderma may trigger ISR primarily independent of the chitin-mediated signaling pathway; however, chitin and Trichoderma may systemically induce similar cellular functions aboveground.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1264/jsme2.ME24038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!