The promoting effect of the POU3F2/METTL16/PFKM cascade on glycolysis and tumorigenesis of hepatocellular carcinoma.

Ann Hepatol

Department of Hepato-Biliary-Pancreatic Surgery, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan, China. Electronic address:

Published: January 2025

AI Article Synopsis

Article Abstract

Introduction And Objectives: Deregulation of mA methylation, the most prevailing RNA modification, participates in cancer pathogenesis. METTL16, an atypical methyltransferase, functions as a pro-tumorigenic factor in hepatocellular carcinoma (HCC). Here, we explored the action of METTL16 on HCC glycolysis and the associated mechanism.

Materials And Methods: Expression analysis was done by quantitative PCR, immunoblotting, or immunohistochemistry. Cell sphere formation, invasiveness, apoptosis, proliferation and viability were detected by sphere formation, transwell, flow cytometry, EdU and CCK-8 assays, respectively. Xenograft studies were performed to analyze the role in vivo. Methylated RNA immunoprecipitation (MeRIP) and RIP assays were used to verify the METTL16/PFKM relationship. PFKM mRNA stability was tested by actinomycin D treatment. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to analyze the POU3F2/METTL16 relationship.

Results: In HCC, METTL16 expression was elevated, and increased levels of METTL16 transcript predicted poor HCC prognosis. METTL16 deficiency resulted in suppressed HCC cell growth, invasiveness and sphere formation. Moreover, METTL16 depletion diminished HCC cell glycolysis. Mechanistically, PFKM expression was positively associated with METTL16 expression. METTL16 mediated m6A methylation to stabilize PFKM mRNA via an IGF2BP3-dependent manner. Restored PFKM expression exerted a counteracting effect on METTL16 deficiency-mediated in vitro cell phenotype alterations and in vivo xenograft growth suppression. Furthermore, POU3F2 promoted the transcription of METTL16 in HCC cells.

Conclusions: Our findings define the crucial role of the POU3F2/METTL16/PFKM axis in HCC pathogenesis, offering the potential opportunity to combat HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aohep.2025.101776DOI Listing

Publication Analysis

Top Keywords

sphere formation
12
mettl16
10
hcc
9
hepatocellular carcinoma
8
mettl16 hcc
8
performed analyze
8
pfkm mrna
8
mettl16 expression
8
hcc cell
8
pfkm expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!