Lignin-based porous carbon, a derivative of lignin, is acknowledged for its cost-effectiveness, stability, and environmental sustainability. It exhibits significant adsorption capacity for the removal of heavy metals and in wastewater treatment, rendering it a highly esteemed adsorbent material. However, the potential of lignin-derived porous carbon for the capture of iodine in environmental contexts has yet to be thoroughly investigated. This research aims to examine the iodine capture capabilities of lignin-derived porous carbon in both iodine vapor and iodine/cyclohexane solution. Initially, lignin derivatives (ADL) (Mn = 2.85 × 10, Mw / Mn = 1. 73) were synthesized through the graft copolymerization of lignin (Mn ≈ 2500), 4-acetoxystyrene, and dienopropyl terephthalate in ethylene glycol, utilizing azobisisobutyronitrile (AIBN) as the initiator. Subsequently, ADL was transformed into layered lignin-based porous carbon (ADLC) by one-step carbonization and zinc chloride activation. The iodine adsorption capacity of ADLC was determined to be 2340 mg/g in an iodine vapor environment and 354 mg/g in a 500 mg/L iodine/cyclohexane solution. These findings indicate that the layered porous carbon (ADLC) derived from lignin represents a promising material for iodine capture, providing an economical, stable, and environmentally friendly approach to nuclear waste management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.139412 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.
Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.
View Article and Find Full Text PDFFront Microbiol
January 2025
Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
The application of antimicrobial surfaces requires proof of their effectivity by methods in laboratories. One of the most common test methods is ISO 22196:2011, which represents a simple and inexpensive protocol by applying the bacterial suspension with known volume and concentration covered under a polyethylene film on the surfaces. The incubation is then conducted under defined humidity conditions for 24 h.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
Rechargeable Zn-air batteries (RZABs) are poised for industrial application, yet they require low-cost, high-performance catalysts that efficiently facilitate both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The pivotal challenge lies in designing multimetal active sites and optimizing the carbon skeleton structure to modulate catalyst activity. In this study, we introduce a novel hierarchical porous carbon-supported FeCoNi bifunctional catalyst, synthesized via a spray combustion method.
View Article and Find Full Text PDFChemistry
January 2025
Yangzhou University, School of Chemistry and Chemical Engineering, CHINA.
Designing transition metal oxide (TMO)/porous carbon composite materials for the oxygen reduction reaction (ORR) is a promising strategy in high-performance fuel cell technology. In this study, we used the isolation effect and pore-creating properties of Zn2+ to fabricate a composite material comprising ultrasmall Fe3O4 particles anchored on hierarchically N-doped porous carbon nanospheres. This material, referred to as CPZ1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!