Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Promoting angiogenesis, alleviating oxidative stress injury and inflammation response are crucial for bone healing. Herein, the deferoxamine (DFO)-loaded gelatin methacryloyl (GelMA) hydrogel coating (GelMA-DFO) was constructed on the 3D-printed poly(Glycolide-Co-Caprolactone)-hydroxyapatite (PGCL-HAP) scaffold. After the hydrogel coating was established, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and water contact angle measurement were employed to evaluate the characteristic and the biological properties were assessed. The modification of GelMA-DFO hydrogel endows the PGCL-HAP scaffold with angiogenic, anti-oxidative and immunoregulatory properties, overcoming the limitation of single-functionality in traditional bone tissue engineering (BTE) scaffolds. The improvement of hydrophilicity via GelMA-DFO hydrogel coating promoted cell adhesion onto the scaffold. Due to the load of DFO, the osteogenic and angiogenic effect of the scaffold in vitro were significantly enhanced. Importantly, the PGCL-HAP-DFO scaffold could effectively scavenge reactive oxygen species (ROS) and further polarized macrophage from pro-inflammation phenotype M1 to anti-inflammation phenotype M2. Experimental results in vivo further confirmed that the GelMA-DFO hydrogel coating promoted the osseointegration of PGCL-HAP scaffold via reducing inflammation, further enhancing new bone formation and tissue vascularization. Above, these results demonstrated that GelMA-DFO hydrogel endows PGCL-HAP scaffold with multiple bio-functions, thus accelerating the process of bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.139509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!