A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing Biochar-Based Column Filtration Systems for Enhanced Pollutant Removal in Wastewater Treatment: A Preliminary Study. | LitMetric

Optimizing Biochar-Based Column Filtration Systems for Enhanced Pollutant Removal in Wastewater Treatment: A Preliminary Study.

Chemosphere

Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech Morocco. Electronic address:

Published: January 2025

AI Article Synopsis

  • The study tests biochar-based substrates for their effectiveness in removing pollutants from wastewater, focusing on determining the best biochar concentration for large-scale filters like constructed wetlands.
  • Preliminary lab tests using different concentrations of biochar (0%, 10%, 25%, and 50%) showed significant improvements in removing nitrogen, phosphorus, chemical oxygen demand, and total suspended solids in comparison to control filters.
  • The best results for pollutant removal were achieved with 10% biochar, indicating that a lower concentration is both economically and environmentally beneficial for wastewater treatment systems.

Article Abstract

This study aims to test the efficiency of biochar-based substrates in removing chemical and bacteriological pollutants from wastewater and to determine the optimal percentage of biochar (BC) to implement for large-scale filters (e.g., constructed wetlands). So, a preliminary test was conducted on a lab column scale for wastewater treatment of decanted wastewater using column filtration systems (CFS) integrated with BC (BC-based CFSs) at different concentrations (0%, 10%, 25%, and 50%). The BC used here was produced from exhausted olive pomace (pyrolised at T 590 °C, residence time of 2 h and a heating rate of 10 °C min). The results revealed that the BC incorporated into the CFS improved the efficiency of nitrogen species removal (total nitrogen (TN) 64-65%, total kjeldahl nitrogen (TKN) 75% - 77%, organic nitrogen (ON) 78% - 87%, and NH-N 57% - 69%); phosphorus species (total phosphorus (TP) 39% - 44%, PO 38% - 42%); total and soluble chemical oxygen demand (TCOD (44% - 56%), and SCOD (33% - 51%) respectively); and total suspended solids (TSS) 87% - 92%, compared to the control filter (CFS0). Bacteriological analysis focused on faecal bacteria indicators, including total coliforms (TC), faecal coliforms (FC), faecal streptococci (FS), as well as the pathogen Staphylococcus (SP) and total aerobic mesophilic flora (TAMF). The highest removal efficiencies were observed for CFS10. Based on this preliminary study, the efficiency of CFS in removing pollutants from wastewater is optimal with a small amount of BC (10%) from both water quality and economic points of view.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2025.144067DOI Listing

Publication Analysis

Top Keywords

column filtration
8
filtration systems
8
wastewater treatment
8
preliminary study
8
pollutants wastewater
8
coliforms faecal
8
total
7
wastewater
5
optimizing biochar-based
4
biochar-based column
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!