Replacement of a single residue changes the primary specificity of thrombin.

J Thromb Haemost

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA. Electronic address:

Published: January 2025

Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.

Objectives: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.

Methods: X-ray crystallography is used to solve the structure of thrombin bound to the irreversible inhibitor H-D-Phe-Pro-Phe-CHCl (PPPCK). Residue D189 is mutated to Ala, Lys, Phe, and Ser.

Results: The X-ray structure of the thrombin-PPPCK complex is solved at 2.5 Å resolution and compared to the structure of thrombin bound to H-D-Phe-Pro-Arg-CHCl (PPACK). PPPCK binds to thrombin in a conformation similar to that of PPACK, but Phe at P1 makes no contacts with D189. Replacement of D189 with Ala, Lys, Phe, or Ser reverses both substrate preference and stability enhancement from Arg to Phe.

Conclusion: D189 in the S1 pocket confers thrombin "trypsin-like" specificity for Arg at P1. However, the S1 pocket is wide enough to also enable "chymotrypsin-like" specificity for Phe at P1. Consistent with these structural features, a single amino acid replacement (D189A) switches thrombin specificity from trypsin-like to chymotrypsin-like, converting the substrate preference from H-D-Phe-Pro-Arg-p-nitroanilide to H-D-Phe-Pro-Phe-p-nitroanilide and preferential stability enhancement from PPACK to PPPCK. The observation that thrombin specificity is controlled mainly by a single residue establishes a new paradigm in the field of trypsin-like proteases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtha.2024.12.024DOI Listing

Publication Analysis

Top Keywords

structure thrombin
12
thrombin bound
12
thrombin
9
single residue
8
primary specificity
8
substrates carrying
8
carrying phe
8
x-ray structure
8
ala lys
8
lys phe
8

Similar Publications

Genetic analysis of a pedigree with hereditary coagulation factor XII deficiency.

Ann Hematol

January 2025

Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

Analyze the clinical phenotype and gene mutations of a family with hereditary FXII deficiency, and preliminarily explore its phenotypic manifestations. The routine coagulation indicators and related coagulation factors were measured.Thromboelastography and thrombin generation tests simulated coagulation and anticoagulation states in vitro and in vivo.

View Article and Find Full Text PDF

During the blood coagulation cascade, coagulation factor VIII (FVIII) is activated by thrombin to form activated factor VIII (FVIIIa). FVIIIa associates with platelet surfaces at the site of vascular damage to form an intrinsic tenase complex with activated factor IX. A working model for FVIII membrane binding involves the association of positively charged FVIII residues with negatively charged lipid headgroups and the burial of hydrophobic residues into the membrane interior.

View Article and Find Full Text PDF

Background:  We previously identified a factor (F)VIII molecular defect associated with an R2159C mutation in the C1 domain (named "FVIII-Ise") together with undetectable FVIII antigen (FVIII:Ag) levels measured by two-site sandwich ELISA using an anti-C2 domain alloantibody (alloAb). The patient had clinically mild hemophilia A, and his reduced FVIII:C correlated with FVIII:Ag measured by ELISA using monoclonal antibodies (mAbs) with A2 and A2/B domain epitopes, suggesting that the R2159C mutation modified C2 domain antigenicity.

Aim:  To investigate functional and structural characteristics of the FVIII-R2159C mutant.

View Article and Find Full Text PDF

Serious issues with cryo-EM structures of human prothrombinase.

Open Biol

January 2025

Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road , Cambridge CB2 0XY, UK.

Thrombin is generated from prothrombin through sequential cleavage at two sites by the enzyme complex prothrombinase, composed of a serine protease, factor (f) Xa and a cofactor, fVa, on phospholipid membranes. In a recent paper published in , Ruben . (Ruben .

View Article and Find Full Text PDF

Construction of enzyme-MOFs composite with carbon dots: A strategy to enhance the activity and increase the growth rate of the enzyme-ZIF-8 composite.

Int J Biol Macromol

January 2025

Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China. Electronic address:

Encapsulating enzymes in metal-organic frameworks (MOFs) enhances enzyme protection and improves the accuracy of inhibitor recognition and screening. Zeolitic imidazolate framework-8 (ZIF-8) has been widely used as a host matrix for enzyme immobilization. However, challenges such as the microporous structure and hydrophobicity of ZIF-8, along with the protonation of 2-methylimidazole, hinder the maintenance of activity and the rapid formation of composite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!