Lithium restores nuclear REST and Mitigates oxidative stress in down syndrome iPSC-Derived neurons.

Neuroscience

Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia. Electronic address:

Published: January 2025

AI Article Synopsis

  • Down syndrome (DS) is linked to trisomy 21, leading to intellectual disabilities and increased oxidative stress, impacting neuronal health.
  • REST is a key protein involved in regulating genes related to DS neuropathology, and this study explores lithium’s effects on restoring REST levels in DS neurons.
  • Results indicated that lithium treatment restored nuclear REST levels and significantly reduced reactive oxygen species (ROS) in DS neurons, suggesting potential therapeutic benefits of lithium for improving neuronal function in Down syndrome.

Article Abstract

Down syndrome (DS), caused by trisomy 21, is characterized by intellectual disability and accelerated aging, with chronic oxidative stress contributing to neurological deficits. REST (Repressor Element-1 Silencing Transcription factor), a crucial regulator of neuronal gene expression implicated in DS neuropathology. This study investigates the neuroprotective potential of lithium, a mood stabilizer with known cognitive-enhancing effects, in restoring levels of REST. Using three pairs of human disomic and trisomic DS induced pluripotent stem cell (iPSC) isogenic lines, we differentiated neurons and treated them with lithium. Nuclear REST expression and reactive oxygen species (ROS) levels were quantified. Results showed the significantly lower nuclear REST expression in DS neurons was restored after 24 h of 10 mM lithium carbonate treatment. Notably, lithium treatment selectively reduced ROS levels in DS neurons to near-baseline levels. When challenged with hydrogen peroxide, DS neurons exhibited increased vulnerability to oxidative stress. The lithium treatment also significantly reduced ROS levels in the stressed control neurons. These findings reveal a positive association between lithium treatment, REST restoration, and oxidative stress reduction, suggesting that repurposing lithium could contribute to developing therapeutic strategies for DS neuropathologies. This study provides novel insights into DS molecular mechanisms and highlights the potential of lithium as a targeted intervention for improving neuronal function in DS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2024.12.061DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
nuclear rest
12
ros levels
12
lithium treatment
12
lithium
9
potential lithium
8
rest expression
8
reduced ros
8
rest
6
neurons
6

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!