Macrophages are a pivotal immune cell population in the tumor microenvironment of colorectal cancer (CRC). Differently-polarized macrophages could be exploited to yield naturally-tailored biomimetic nanoparticles for CRC targeting. Here, membrane proteins were isolated from the THP-1 cell line, and anti-tumor macrophages (M1) were obtained from differentiation of THP-1. Membrane proteins were isolated from THP-1 and M1 and used to produce lipid nanovesicles (LNVs; T-LNVs and M1-LNVs) by microfluidic process, which were loaded with doxorubicin (DOXO). The DOXO loaded T-LNVs and M1-LNVs showed similar size (120-145 nm), PDI (0.11-0.28), zeta potential (-15 to -30 mV) and drug loading efficiency (65-75 %). Mass-spectrometry confirmed the presence of the membrane proteins in the LNVs. The abundance of proteins related to stealth properties, cancer targeting, endothelial adhesion and immune-related markers was significantly different in T-LNVs and M1-LNVs. Cell culture studies showed that M1-LNVs possessed higher cancer cell targeting, uptake and cytotoxicity compared to T-LNVs. In vivo studies performed with zebrafish embryos showed that M1-LNVs yielded higher cancer cell targeting and cytotoxicity while systemic cytotoxicity was lower compared to free DOXO. These findings confirm the potentiality and versatility of M1-LNVs for cancer treatment, which could be exploited as new avenue of nanoparticles-based therapies for precision medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2025.125169 | DOI Listing |
Nanomedicine (Lond)
January 2025
Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.
Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.
Circ Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Psychology, University of Miami, Coral Gables, FL, United States.
The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.
View Article and Find Full Text PDFIn the central nervous system, apolipoprotein (APO) E-containing high-density lipoprotein (HDL)-like particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. Despite this, the role of HDL-like cholesterol trafficking on Alzheimer's disease (AD) pathogenesis remains poorly understood. We aimed to examine cholesterol transport via HDL-like particles in cerebrospinal fluid (CSF) of AD patients compared to control individuals.
View Article and Find Full Text PDFVertebrate vision in dim-light environments is initiated by rod photoreceptor cells that express the photopigment rhodopsin, a G-protein coupled receptor (GPCR). To ensure efficient light capture, rhodopsin is densely packed into hundreds of membrane discs that are tightly stacked within the rod-shaped outer segment compartment. Along with its role in eliciting the visual response, rhodopsin serves as both a building block necessary for proper outer segment formation as well as a trafficking guide for a few outer segment resident membrane proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!