A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

BLOOD PROTEOMICS AND MULTIMODAL RISK PROFILING of human volunteers after incision injury: a translational study for advancing Personalized Pain Management After Surgery. | LitMetric

AI Article Synopsis

  • A significant number of patients experience chronic pain after surgery, highlighting the urgent need for predictive models that consider bio-psycho-social and physiological factors.
  • A study involving male volunteers assessed pain characteristics, psychological factors, and blood proteomics before and after an experimental incision to predict outcomes related to pain intensity and hyperalgesia.
  • The results revealed that a combination of diverse parameters could predict pain responses more accurately than single features, identified specific protein signatures associated with inflammation, and suggested repurposing existing medications for better pain management.

Article Abstract

A significant number of patients develop chronic pain after surgery, but prediction of those who are at risk is currently not possible. Thus, prognostic prediction models that include bio-psycho, social and physiological factors in line with the complex nature of chronic pain would be urgently required. Here, we performed a translational study in male volunteers before an experimental incision injury. We determined multi-modal factors ranging from pain characteristics, psychological questionnaires to blood proteomics. Outcome measures after incision were pain intensity ratings and the extent of the area of hyperalgesia to mechanical stimuli surrounding the incision as a proxy of central sensitization. A multi-step logistic regression analysis was performed to predict outcome measures based on feature combinations using data-driven cross-validation and prognostic model development. Phenotype-based stratification resulted in the identification of low and high responders for both outcome measures. Regression analysis revealed prognostic proteomic, specific psychophysical and psychological parameters. A combinatorial set of distinct parameters enabled us to predict outcome measures with increased accuracy compared to using single features. Remarkably, in high responders, protein network analysis suggested a protein signature characteristic for low-grade inflammation. Alongside, in silico drug repurposing highlighted potential treatment options employing antidiabetic and anti-inflammatory drugs. Taken together, we present here an integrated pipeline that harnesses bio-psycho-physiological data for prognostic prediction in a translational approach. This pipeline opens new avenues for clinical application with the goal tostratify patients and identify potential new targets as well as mechanistic correlates for postsurgical pain. GERMAN CLINICAL TRIALS REGISTRY: (DRKS-ID: DRKS00016641).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2025.107580DOI Listing

Publication Analysis

Top Keywords

outcome measures
16
blood proteomics
8
incision injury
8
translational study
8
chronic pain
8
prognostic prediction
8
regression analysis
8
predict outcome
8
high responders
8
pain
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!