Aims: Cerebral ischemia-reperfusion injury (CIRI) exacerbates post-stroke brain damage. We aimed to understand the role of glucose-6-phosphate dehydrogenase (G6PD) in CIRI and mitophagy.
Materials And Methods: Lentivirus and small interfering RNA were utilized to suppress G6PD in tissues and cells, leading to the establishment of in vivo and in vitro models of ischemia-reperfusion following middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/ reoxygenation (OGD/R). The expression and function of G6PD were investigated through differential gene analysis and weighted correlation network analysis (WGCNA), immunofluorescence, and western blotting (WB).
Key Findings: G6PD mRNA levels increased 3 d after MCAO, and G6PD protein expression was elevated in the ischemic penumbra of mice and HT22 cells following OGD/R. G6PD knockdown increased neural deficits, enlarged infarct volume in mice after CIRI, and reduced HT22 cell survival during OGD/R. WGCNA indicated a correlation between G6PD and mitophagy in CIRI. Following G6PD knockdown, the p-DRP1/DRP ratio increased, the PINK1/Parkin pathway was further activated, and TOMM20 expression was downregulated. The mitophagy inhibitor Mdivi-1 reversed these changes, as well as the nerve damage caused by G6PD knockdown, and alleviated mitochondrial damage in the ischemic penumbra.
Significance: The role of G6PD in CIRI was revealed and its interaction with mitophagy was explored, providing important insights for understanding the molecular mechanism of CIRI and developing new therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2024.123367 | DOI Listing |
Life Sci
January 2025
Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China. Electronic address:
Cardiovasc Res
December 2024
School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK.
Aims: The transcription factor NRF2 is well recognized as a master regulator of antioxidant responses and cytoprotective genes. Previous studies showed that NRF2 enhances resistance of mouse hearts to chronic hemodynamic overload at least in part by reducing oxidative stress. Evidence from other tissues suggests that NRF2 may modulate glucose intermediary metabolism but whether NRF2 has such effects in the heart is unclear.
View Article and Find Full Text PDFBiol Direct
November 2024
Department of Hepatobiliary Surgery, Siyang Hospital, Suqian, Jiangsu, 223799, China.
Hepatocellular carcinoma (HCC) ranks among the most lethal malignancies around the world. However, the current management strategies for predicting prognosis in HCC patients remain unreliable. Our study developed a robust prognostic model based on glutamine metabolism associated-genes (GMAGs), utilizing data from The Cancer Genome Atlas database.
View Article and Find Full Text PDFMol Med
October 2024
Department of Nephrology, The First People's Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), No. 102, luojiajing, beihu District, Chenzhou, Hunan, 423000, P.R. China.
Cell Death Discov
August 2024
Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
METTL14 functions as an RNA methyltransferase involved in m6A modification, influencing mRNA biogenesis, decay, and translation processes. However, the specific mechanism by which METTL14 regulates glucose-6-phosphate dehydrogenase (G6PD) to promote the progression of lung adenocarcinoma (LUAD) is not well understood. Quantitative measurement and immunohistochemistry (IHC) analysis have demonstrated higher levels of m6A in LUAD tissues compared to adjacent normal tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!