Previous studies have demonstrated that high-mobility group box protein 1(HMGB1) was increased and released to the extracellular and participated in the pathogenesis of steroid-insensitive asthma induced by toluene diisocyanate (TDI). Mitochondrial dysfunction of bronchial epithelia is a critical feature in TDI asthma. However, whether mitochondrial dysfunction regulated HMGB1 release in asthma remains unknown. The aim of this study was to explore whether phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein, can regulate HMGB1 release in TDI-induced asthma. The gene expression data series (GSE) 6747 from gene expression omnibus (GEO) database was analyzed to compare the levels of PGAM5 in airway epithelial cells from asthma patients and healthy individuals. Male C57BL/6J mice were sensitized and challenged with TDI and treated with the PGAM5 inhibitor LFHP-1c. In vitro, human bronchial epithelial cells(16HBE) were stimulated by TDI-human serum albumin (HSA) and pretreated with PGAM5 siRNA. In this study, we observed PGAM5 expression was notably increased in airway epithelial cells of asthma patients and TDI-induced asthma mice. In vivo, inhibition of PGAM5 significantly ameliorated airway inflammation, airway hyperresponsiveness (AHR) and mucus hypersecretion, coupled with the decrease of pulmonary HMGB1 expression and release in TDI-exposed mice. In vitro, inhibition of PGAM5 improved mitochondrial dysfunction, decreased the production of reactive oxygen species (ROS) in mitochondrial. Knockdown of PGAM5 reduced the release of cytochrome C (cyt c) and HMGB1 release in TDI-induced asthma. Mechanistically, PGAM5 in bronchial epithelial cells treated by TDI-HSA significantly increased the dephosphorylation of Bax at the S184 residue, promoted the translocation of Bax to mitochondria, and contributed to the activation of mitochondrial-dependent apoptosis in TDI-induced asthma. Based on these findings, we uncovered a novel regulatory mechanism by which high PGAM5 expression promotes airway inflammation by mediating HMGB1 release in TDI-induced asthma, identifying the therapeutic effects of targeting PGAM5 in steroid-insensitive asthma model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2025.01.003 | DOI Listing |
Front Immunol
January 2025
The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.
Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infections that is initiated by the body's innate immune system. Nearly a decade ago, we discovered that bacterial lipopolysaccharide (LPS) and serum amyloid A (SAA) upregulated Connexin 43 (Cx43) and Pannexin 1 (Panx1) hemichannels in macrophages. When overexpressed, these hemichannels contribute to sepsis pathogenesis by promoting ATP efflux, which intensifies the double-stranded RNA-activated protein kinase R (PKR)-dependent inflammasome activation, pyroptosis, and the release of pathogenic damage-associated molecular pattern (DAMP) molecules, such as HMGB1.
View Article and Find Full Text PDFLife Sci
January 2025
Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Rheumatoid arthritis (RA) is a chronic inflammatory disease where pain, driven by both inflammatory and non-inflammatory processes, is a major concern for patients. This pain can persist even after joint inflammation subsides. High mobility group box-1 (HMGB1) is a non-histone-DNA binding protein located in the nucleus that plays a key role in processes such as DNA transcription, recombination, and replication.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:
J Clin Anesth
January 2025
Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, United States of America. Electronic address:
Cognitive impairment following surgery is a significant complication, affecting multiple neurocognitive domains. The term "perioperative neurocognitive disorders" (PND) is recommended to encompass this entity. Individuals who develop PND are typically older and have increases in serum and brain pro-inflammatory cytokines notwithstanding the type of surgery undergone.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!