A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemical dissection of bacterial virulence. | LitMetric

Chemical dissection of bacterial virulence.

Bioorg Med Chem

Department of Immunology and Microbiology, Scripps Research, United States; Department of Chemistry, Scripps Research, United States. Electronic address:

Published: December 2024

The emergence of antibiotic-resistant bacteria has intensified the need for novel therapeutic strategies targeting bacterial virulence rather than growth or survival. Bacterial virulence involves complex processes that enable pathogens to invade and survive within host cells. Chemical biology has become a powerful tool for dissecting these virulence mechanisms at the molecular level. This review highlights key chemical biology approaches for studying bacterial virulence, focusing on four areas: 1) regulation of virulence, where chemoproteomics has identified small molecule-protein interactions that modulate virulence gene expression; 2) identification of virulence proteins, using techniques like unnatural amino acid incorporation and activity-based protein profiling (ABPP) to uncover proteins involved in infection; 3) post-translational modifications of host proteins, where chemical probes have revealed how bacterial effectors alter host cell processes; and 4) effector-host protein interactions, with methods such as bifunctional unnatural amino acid incorporation facilitating the discovery of key host targets manipulated by bacterial effectors. Collectively, these chemical tools are providing new insights into pathogen-host interactions, offering potential therapeutic avenues that aim to disarm pathogens and combat antibiotic resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2024.118047DOI Listing

Publication Analysis

Top Keywords

bacterial virulence
16
virulence
8
chemical biology
8
unnatural amino
8
amino acid
8
acid incorporation
8
bacterial effectors
8
bacterial
6
chemical
5
chemical dissection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!