Estimation of potential denitrification and its spatiotemporal dynamics in seasonally inundated geomorphic units of a large tropical river using satellite data.

Sci Total Environ

Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Ecoscience, Freshwater Ecology, University of Aarhus, Aarhus, Denmark. Electronic address:

Published: January 2025

AI Article Synopsis

  • Denitrification in large tropical rivers plays a crucial role in nitrogen retention, but accurate measurements for seasonal and geomorphological comparisons are challenging.
  • Researchers tested a hypothesis linking potential denitrification rates (PDR) to soil and vegetation characteristics in various geomorphic units (GUs) along a section of the Padma River in Bangladesh.
  • They found significant relationships between PDR, vegetation cover, and soil moisture, using remote sensing data to model PDR across different seasons, concluding that certain GUs, particularly vegetation islands and bars, are key areas for denitrification.

Article Abstract

Denitrification in large tropical river systems is likely important for nitrogen retention estimates, but is limited by the need for measurements and the ability to scale these estimates to relate seasonal changes to river geomorphology and discharge. Geomorphic units (GUs), that describe the structure of a river system based on their inundation frequency and vegetation cover, may be useful to characterise features that influence denitrification rates. In this study, we tested the hypothesis that measurements of potential denitrification rate (PDR) using denitrification enzyme assays from different GUs could be used to1) relate PDR to soil, vegetation and different land use and land-cover (LULC) types as controlling factors and 2) that these characteristics could be assessed using remote sensing data to model PDR over a large spatial scale (along a 50 km reach) for the Padma River (Bangladesh). Specifically, 245 PDR measurements were made from the four LULC types with in eight GUs during the dry/winter season 2020. Linear regression using a mixed-modelling approach showed that PDR was highly related to vegetation cover and soil moisture across all GUs. Sentinel-2 data were then used to develop relationships between the Normalised Difference Vegetation Index. (NDVI) and vegetation cover and, specifically, between Sentinel-2 band 11 and soil moisture, which also reasonably described PDR rates. We then used this satellite data to estimate reach-scale PDR in post-monsoon, dry/winter and pre-monsoon seasons. The satellite-based model showed that PDR increased in GUs from post-monsoon 2019 to pre-monsoon 2020. The vegetation islands and the bars were the most important GUs for denitrification in all seasons. The satellite-assisted approach developed in this study can be applied to the GUs in large lowland rivers where inundation occurs frequently.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.178287DOI Listing

Publication Analysis

Top Keywords

vegetation cover
12
potential denitrification
8
geomorphic units
8
large tropical
8
tropical river
8
satellite data
8
pdr
8
lulc types
8
model pdr
8
soil moisture
8

Similar Publications

Seasonal monitoring of forage C:N:ADF ratio in natural rangeland using remote sensing data.

Environ Monit Assess

January 2025

Department of Plant and Soil Sciences, University of Pretoria, Hatfield, 0001, Pretoria, South Africa.

In recent decades, natural rangelands have emerged as vital sources of livelihood and ecological services, particularly in Southern Africa, supporting communities in developing regions. However, the escalating global demand for food, driven by a growing human population, has led to the extensive expansion of cultivated areas, resulting in continuous nutrient leaching in rangelands. To ensure the long-term viability of these ecosystems, there is a need to develop effective approaches for managing and monitoring the seasonality of forage quality.

View Article and Find Full Text PDF

Aboveground biomass estimation in a grassland ecosystem using Sentinel-2 satellite imagery and machine learning algorithms.

Environ Monit Assess

January 2025

School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, 2000, South Africa.

The grassland ecosystem forms a critical part of the natural ecosystem, covering up to 15-26% of the Earth's land surface. Grassland significantly impacts the carbon cycle and climate regulation by storing carbon dioxide. The organic matter found in grassland biomass, which acts as a carbon source, greatly expands the carbon stock in terrestrial ecosystems.

View Article and Find Full Text PDF

Estimation of potential denitrification and its spatiotemporal dynamics in seasonally inundated geomorphic units of a large tropical river using satellite data.

Sci Total Environ

January 2025

Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Ecoscience, Freshwater Ecology, University of Aarhus, Aarhus, Denmark. Electronic address:

Article Synopsis
  • Denitrification in large tropical rivers plays a crucial role in nitrogen retention, but accurate measurements for seasonal and geomorphological comparisons are challenging.
  • Researchers tested a hypothesis linking potential denitrification rates (PDR) to soil and vegetation characteristics in various geomorphic units (GUs) along a section of the Padma River in Bangladesh.
  • They found significant relationships between PDR, vegetation cover, and soil moisture, using remote sensing data to model PDR across different seasons, concluding that certain GUs, particularly vegetation islands and bars, are key areas for denitrification.
View Article and Find Full Text PDF

Assessment of the effect of management activities like a drought salinity barrier and herbicide treatments on the spread of submersed and floating aquatic estuary macrophytes.

Sci Total Environ

January 2025

Center for Spatial Technologies and Remote Sensing (CSTARS), Institute of the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA. Electronic address:

Estuaries are complex ecosystems, being difficult to determine the way management actions affect them. This study quantitatively evaluated the spread of invasive submerged and floating aquatic macrophyte vegetation in Franks Tract of the Sacramento-San Joaquin Delta in response to two types of management actions, drought salinity barriers in years 2015, 2021 and 2022, and herbicide treatments in years 2004-2022. A Random Forest algorithm applied to airborne hyperspectral and satellite multispectral images generated maps of macrophyte cover in 2004-2022.

View Article and Find Full Text PDF

Rhinitis is one of the most common respiratory diseases, influenced by various environmental factors such as green space, air pollution and indoor microbiomes. However, their interactions and combined effects have not been reported. We recruited 1121 preschool children from day care centers in a northern city of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!