Model-based scenario analysis to support the operation of solar photo-Fenton plants.

J Environ Manage

Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, Almería, 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería, 04120, Spain.

Published: January 2025

Model-based tools applied to wastewater management have been identified as an emerging solution to address the associated challenges related to the optimization of the technologies, meeting more restricted water quality standards. Thus, for the first time, the demonstration of the solar photo-Fenton process for microcontaminant removal in the operating environment of a model-based tool is reported. This tool aids in determining the right cost-effective seasonal strategy for a 37-m demonstration-scale photoreactor operating in a rural wastewater treatment plant. It was developed using a model tuned adequately with experimental data obtained at lab scale and then validated in the solar photo-Fenton demonstration plant, proving its reliability, and enveloping a robust operation. Imidacloprid removal was the treatment target, and reagent concentrations were 0.1 mM for ferric nitrilotriacetate and 0.73 mM for hydrogen peroxide. According to the model-based tool, to attain the maximum treatment capacity, the best operating conditions were a liquid depth of 20-cm, and hydraulic residence time of 45 and 60-min in summer and winter, respectively, augmenting the treatment cost by 25% (0.49 €∙m vs. 0.65 €∙m). This model-based tool allows the control and optimization of the technology to be improved, while promoting its attractiveness in the market.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123886DOI Listing

Publication Analysis

Top Keywords

solar photo-fenton
12
model-based tool
12
model-based
5
model-based scenario
4
scenario analysis
4
analysis support
4
support operation
4
operation solar
4
photo-fenton plants
4
plants model-based
4

Similar Publications

Model-based scenario analysis to support the operation of solar photo-Fenton plants.

J Environ Manage

January 2025

Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, Almería, 04120, Spain; Chemical Engineering Department, University of Almería, Carretera de Sacramento s/n, Almería, 04120, Spain.

Model-based tools applied to wastewater management have been identified as an emerging solution to address the associated challenges related to the optimization of the technologies, meeting more restricted water quality standards. Thus, for the first time, the demonstration of the solar photo-Fenton process for microcontaminant removal in the operating environment of a model-based tool is reported. This tool aids in determining the right cost-effective seasonal strategy for a 37-m demonstration-scale photoreactor operating in a rural wastewater treatment plant.

View Article and Find Full Text PDF

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFeO@g-CN heterojunctions were developed by embedding p-type NiFeO nanoparticles (NPs) within n-type porous ultrathin g-CN (p-uCN) nanosheets. The optimized NiFeO@g-CN, loaded with 20 wt % magnetic counterparts, exhibits exceptional photocatalytic methylene blue (MB) degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.

View Article and Find Full Text PDF

Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment :Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle.

Chemosphere

December 2024

School of Materials Science and Engineering, Shijiazhuang Tiedao University, Hebei Key Laboratory of New Materials for Collaborative Development of Traffic Engineering and Environment. Electronic address:

Nanoscale FeWO/BiVO heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO/BiVO @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO/BiVO heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO/BiVO with excellent solar-Fenton like reaction activity.

View Article and Find Full Text PDF

Piggery wastewater treatment by solar photo-Fenton coupled with microalgae production.

Water Res

March 2025

LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, Lisbon 1649-038, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.

Pig farming generates highly polluted wastewater that requires effective treatment to minimize environmental damage. Microalgae can recover nutrients from piggery wastewater (PWW), but excessive nutrient and turbidity levels inhibit their growth. Solar photo-Fenton (PF) offer a sustainable and cost-effective pretreatment to allow microalgal growth for further PWW treatment.

View Article and Find Full Text PDF

FeOOH Quantum Dots Assembled MXene-Decorated 3D Photothermal Evaporator for Synergy Application in Solar Evaporation and Fenton Degradation.

Small Methods

November 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.

Solar-driven water evaporation is considered as the sustainable approach to alleviate freshwater resource crisis through direct use of solar energy. However, it is still challenging to achieve the multifunctional solar evaporators equipped with both high evaporation and purification performance to handle practical complex wastewater. Here, a simple and cost-effective multifunctional 3D solar evaporator is prepared by alternately decorating the commercial sponge with FeOOH quantum dots (FQDs) supported MXene sheets composites and chitosan hydrogel coatings for enabling the solar water evaporation and organic wastewater photodegradation simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!