Peroxyacetic acid (PAA)-based advanced oxidation processes (AOPs) have emerged as a promising treatment method to decontaminate organic pollutants. This review thoroughly evaluated the use of PAA-based AOPs, including their synthesis techniques, physicochemical features, and reaction pathways with pollutants. It also illustrated two primary channels: free radical pathways and non-radical pathways during the PAA activation processes and introduced various methods for activating PAA, including energy radiation, transition metal catalysis, and carbon catalysis. Additionally, this review comprehensively presented the advancements in research on PAA-based AOPs for wastewater treatment. Furthermore, the influences of key parameters on system performance, such as pH, catalyst loading, PAA dosage, and interfering species, were summarized. By critically evaluating mechanisms, performance, and prospects, this review served as a valuable resource for researchers and practitioners involved in the development and implementation of PAA-based AOPs for sustainable water remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123989 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!