Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the mechanisms by which high salinity conditions stimulate adult Artemia females to produce diapaused cysts. We used a H NMR-based metabolomic approach to elucidate the metabolic regulation between ovoviviparity and oviparity in Artemia exposed to different salinities. At a salinity of 80 ppt, 100 % of females produced diapaused cysts, compared to 20 % at 50 ppt. Metabolic profiling revealed significant alterations in a range of metabolites, including 5,6-dihydrouracil, betaine, and malate, in females undergoing oviparity at 80 ppt compared to ovoviviparity at 30 ppt. Multivariate statistical analyses indicated clear separation between the two reproductive strategies. The up-regulated metabolites in oviparity were involved in significant metabolic pathways, such as β-alanine metabolism and the citrate cycle, highlighting substantial metabolic differences between the two reproductive strategies. These identified metabolic pathways might play crucial roles in the maternal response to high salinity, facilitating embryo protection and enhancing the survival and reproductive success of brine shrimp. These findings provide a basis for further research into the molecular mechanisms underlying Artemia adaptation to high salinity environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2024.101409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!