Dysregulation of the fibroblast growth factor receptor 1 (FGFR1) signaling has prompted efforts to develop therapeutic agents, which is a carcinogenic driver of many cancers, including breast, prostate, bladder, and chronic myeloid leukemia. Despite significant progress in the development of potent and selective FGFR inhibitors, the long-term efficacy of these drugs in cancer therapy has been hampered by the rapid onset of acquired resistance. Therefore, more drug discovery strategies are needed to promote the development of FGFR-targeted drugs. Here, we discovered compound S2h, a compound that selectively and effectively degrades FGFR1 at nanomolar concentrations in KG1a cells (IC = 26.81 nM; DC = 39.78 nM), which incorporates an essential, nine atom-long linkers. The importance of linker length, composition, and tethering site proteolysis-targeting chimeras (PROTACs) design is emphasized, and slight modifications can significantly affect degradation potency. Meanwhile, it was verified that the degradation of FGFR1 protein at compound S2h was concentration- and time-dependent and that the protein degradation occurred through the ubiquitin-proteasome system (UPS). In summary, the newly designed heterobifunctional FGFR1 degrader, compound S2h, provides new ideas and references for the research of FGFR small-molecule degraders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2024.108109 | DOI Listing |
Bioorg Chem
December 2024
Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:
Dysregulation of the fibroblast growth factor receptor 1 (FGFR1) signaling has prompted efforts to develop therapeutic agents, which is a carcinogenic driver of many cancers, including breast, prostate, bladder, and chronic myeloid leukemia. Despite significant progress in the development of potent and selective FGFR inhibitors, the long-term efficacy of these drugs in cancer therapy has been hampered by the rapid onset of acquired resistance. Therefore, more drug discovery strategies are needed to promote the development of FGFR-targeted drugs.
View Article and Find Full Text PDFMol Divers
May 2024
Pharmaceutical College, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, China.
Nitric oxide (NO), the smallest signaling molecule known, can be excessively produced by overexpressed inducible nitric oxide synthase (iNOS), and eventually leads to multiple inflammatory related diseases. Thus, reducing the overexpression of NO represents as very potential anti-inflammatory strategy. In current study, a series of compounds were designed and synthesized based on the hybridization of 7H-pyrrolo[2,3-d]pyrimidine and cinnamamide fragments in order to develop novel NO production inhibitors.
View Article and Find Full Text PDFNutr Hosp
October 2023
Laboratorio de Nutrición Experimental. Instituto Nacional de Pediatría.
Initially known for its deleterious health effects, hydrogen sulfide (H2S) has recently been recognized as a biologically important gas carrier, like nitric oxide and carbon monoxide. H2S is produced endogenously in mammalian cells by enzymatic and non-enzymatic pathways. When it is produced by the enzymatic pathway, its synthesis is carried out from the amino acid L-cysteine through the transsulfuration pathway.
View Article and Find Full Text PDFJ Food Sci Technol
July 2023
Department of Food Engineering, Konya Food and Agriculture University, 42080 Konya, Turkey.
Unlabelled: Alginate (ALG) and various gums are potential biomaterials to be employed in hydrogel designs for both food and biomedical applications. This study evaluated a multicomplex design by combining food grade polymers to examine their polymer-polymer interactions and design an oral delivery system for pomegranate concentrate (PC). ALG was replaced with gum tragacanth (GT), xanthan (XN) and their equal combinations (GT:XN) at 50% ratio in hydrogel fabrication.
View Article and Find Full Text PDFDalton Trans
July 2014
Department of Chemistry, Columbia University, New York, New York 10027, USA.
The tris(mercaptoimidazolyl)hydroborato complexes, [κ(3)-S2H-Tm(Bu(t))]Na(THF)3 and [κ(3)-S2H-Tm(Ad)]Na(THF)3, which feature t-butyl and adamantyl substituents, have been synthesized via the reactions of the respective 1-R-1,3-dihydro-2H-imidazole-2-thiones with NaBH4 in THF (R = Bu(t), 1-Ad). X-ray diffraction studies indicate that the compounds are monomeric and that the [Tm(R)] ligands coordinate to the metal in a κ(3)-S2H manner via two of the sulfur donors and the hydrogen attached to boron, a combination that is unprecedented for sodium derivatives. Analysis of the tris(mercaptoimidazolyl)hydroborato compounds that are listed in the Cambridge Structural Database has allowed for the formulation of a set of criteria that enables κ(x)-S(x) and κ(x+1)-S(x)H coordination modes to be identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!