A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Capturing short-range and long-range dependencies of nucleotides for identifying RNA N6-methyladenosine modification sites. | LitMetric

Capturing short-range and long-range dependencies of nucleotides for identifying RNA N6-methyladenosine modification sites.

Comput Biol Med

Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China. Electronic address:

Published: January 2025

N-methyladenosine (mA) plays a crucial role in enriching RNA functional and genetic information, and the identification of mA modification sites is therefore an important task to promote the understanding of RNA epigenetics. In the identification process, current studies are mainly concentrated on capturing the short-range dependencies between adjacent nucleotides in RNA sequences, while ignoring the impact of long-range dependencies between non-adjacent nucleotides for learning high-quality representation of RNA sequences. In this work, we propose an end-to-end prediction model, called mASLD, to improve the identification accuracy of mA modification sites by capturing the short-range and long-range dependencies of nucleotides. Specifically, mASLD first encodes the type and position information of nucleotides to construct the initial embeddings of RNA sequences. A self-correlation map is then generated to characterize both short-range and long-range dependencies with a designed map generating block for each RNA sequence. After that, mASLD learns the global and local representations of RNA sequences by using a graph convolution process and a designed dependency searching block respectively, and finally achieves its identification task under a joint training scheme. Extensive experiments have demonstrated the promising performance of mASLD on 11 benchmark datasets across several evaluation metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.109625DOI Listing

Publication Analysis

Top Keywords

long-range dependencies
16
rna sequences
16
capturing short-range
12
short-range long-range
12
modification sites
12
dependencies nucleotides
8
rna
8
dependencies
5
nucleotides
5
long-range
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!