The DnaJ-Hsp70-Hsp90 co-chaperon networks in scallops under toxic Alexandrium dinoflagellates exposure.

Ecotoxicol Environ Saf

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China. Electronic address:

Published: January 2025

Heat shock proteins (Hsps) are highly conserved molecular chaperones with essential roles against biotic and abiotic stressors. A large set of co-chaperons comprising J-domain proteins (DnaJs) regulate the ATPase cycle of Hsp70s with Hsp90s, together constituting a dynamic and functionally versatile network for protein folding/unfolding and regulation. Marine bivalves could accumulate and tolerate paralytic shellfish toxins (PSTs), the well-noted neurotoxins generated during harmful algal blooms. Here, 37 CfDnaJ and 35 PyDnaJ genes were systematically characterized in Zhikong scallop (Chlamys farreri) and Yesso scallop (Patinopecten yessoensis), the important aquaculture bivalve species in China. After exposure to different PST-producing dinoflagellates, Alexandrium minutum and Alexandrium catenella, diverse DnaJ regulations were presented in scallop hepatopancreas, accumulating incoming PSTs, and kidneys, transforming PSTs into higher toxic analogs. CfDnaJs' up-regulation in kidneys was similar with that in hepatopancreas, while their down-regulation was stronger in kidneys than in hepatopancreas, with CFA.38965.19.DNAJC30 being continuously down-regulated in both tissues of the two algae exposure. Moreover, PyDnaJs' up-regulation was only found in kidneys after A. catenella exposure, and PYE.10799.6.DNAJB1 was down-regulated in both tissues through the experiment. Together with the expression trends and correlation of DnaJ-Hsp70-Hsp90 genes, the organ-, toxin-, and species-dependent Hsp70B2 expressions were coordinately co-expressed with diverse DnaJ members, suggesting the functional diversity of scallop DnaJs with conserved Hsp70B2s in response to stress by PST-producing algae. Our results confirmed the regulated coordination of DnaJ-Hsp70B2 co-chaperons in scallops, and provided vital insights into the function and adaptation of scallop Hsps in response to PST stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117653DOI Listing

Publication Analysis

Top Keywords

diverse dnaj
8
up-regulation kidneys
8
kidneys hepatopancreas
8
down-regulated tissues
8
scallop
5
dnaj-hsp70-hsp90 co-chaperon
4
co-chaperon networks
4
networks scallops
4
scallops toxic
4
toxic alexandrium
4

Similar Publications

The DnaJ-Hsp70-Hsp90 co-chaperon networks in scallops under toxic Alexandrium dinoflagellates exposure.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China. Electronic address:

Heat shock proteins (Hsps) are highly conserved molecular chaperones with essential roles against biotic and abiotic stressors. A large set of co-chaperons comprising J-domain proteins (DnaJs) regulate the ATPase cycle of Hsp70s with Hsp90s, together constituting a dynamic and functionally versatile network for protein folding/unfolding and regulation. Marine bivalves could accumulate and tolerate paralytic shellfish toxins (PSTs), the well-noted neurotoxins generated during harmful algal blooms.

View Article and Find Full Text PDF

The post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here we deploy proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from premade parts.

View Article and Find Full Text PDF

Evaluating the ability of different chaperones in improving soluble expression of a triple-mutated human interferon gamma in Escherichia coli.

J Biosci Bioeng

September 2024

Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand. Electronic address:

Human interferon gamma (hIFN-γ) plays a pivotal role as a soluble cytokine with diverse functions in both innate and adaptive immunity. In a previous investigation, we pinpointed three critical amino acid residues, i.e.

View Article and Find Full Text PDF

A NAC transcription factor MNAC3-centered regulatory network negatively modulates rice immunity against blast disease.

J Integr Plant Biol

September 2024

National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.

NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses.

View Article and Find Full Text PDF

Concordant Gene Expression and Alternative Splicing Regulation under Abiotic Stresses in Arabidopsis.

Genes (Basel)

May 2024

Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia.

The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!