AI Article Synopsis

  • Mitochondrial dysfunction leads to chondrocyte aging, contributing to osteoarthritis (OA) and it remains uncertain if mesenchymal stem cells (MSCs) can help restore mitochondrial function in chondrocytes or reverse OA progression.
  • The study utilized mitochondria-rich extracellular vesicles (MEV) from stem cells to determine their impact on both healthy and stressed human articular chondrocytes in vitro, and further tested their effects in OA rats.
  • Findings revealed that MEV could enter chondrocytes, reduce oxidative stress markers, enhance mitochondrial function, and effectively reduce cartilage degeneration in OA rats, suggesting a potential therapeutic approach for OA management.

Article Abstract

Background: Mitochondrial dysfunction induces chondrocyte senescence, thereby precipitating articular cartilage (AC) degeneration in the pathogenesis of osteoarthritis (OA). Although the transfer of mitochondria from mesenchymal stem cells (MSCs) to host cells and their potential protective role have been demonstrated, whether MSCs can alleviate chondrocyte mitochondrial dysfunction or reverse OA progression remains unclear.

Methods: A mitochondrial tracer was used to investigate the transfer of mitochondria-rich extracellular vesicles (MEV) derived from the culture supernatant of human synovial fluid-derived mesenchymal stem cells (hSF-MSCs). Human articular chondrocytes (hACs) impaired by oxidative stress co-incubated with MEV were used for experimental research in vitro. Healthy hACs and stressed hACs were cultured separately acting as the control groups. The MEV was injected into the OA rats' knee joint serving as experimental group. Healthy and OA rats were served as the control groups. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot (WB), enzyme- linked immunosorbent assay (ELISA), flow cytometry (FC), immunofluorescence (IF), fluorescence spectrophotometer (FS), immunohistochemistry (IHC) and other methods are used to analyze the effect of MEV on hACs and OA progression.

Results: MEV derived from hSF-MSCs could transfer into hACs. Compared to the negative control group, co-incubation with MEV resulted in a significant down-regulation of oxidative stress markers and senescence-associated proteins in hACs, while improved mitochondrial function of hACs. Moreover, the MEV could traverse the dense interstitial layer and migrate towards the deeper cartilage, while intra-articular injection of MEV could effectively attenuate AC degeneration.

Conclusion: The transfer of MEV derived from hSF-MSCs represents a promising strategy for safeguarding AC, thereby offering a potential avenue and mechanism for the treatment of OA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113954DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
12
stem cells
12
mev derived
12
mev
9
mitochondria-rich extracellular
8
extracellular vesicles
8
derived culture
8
culture supernatant
8
supernatant human
8
human synovial
8

Similar Publications

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Unlabelled: Cartilage and joint damage can lead to cartilage degeneration. Bone marrow mesenchymal stem cells (BMSCs) have the potential to address cartilage damage. Hence, this study probed the mechanism of BMSC-extracellular matrix (BMSC-ECM) in promoting damaged chondrocyte repair by regulating the Notch1/RBPJ pathway.

View Article and Find Full Text PDF

Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials.

Stem Cell Res Ther

January 2025

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.

Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.

View Article and Find Full Text PDF

Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.

View Article and Find Full Text PDF

We studied the effect of reprogrammed CD8 T cells (rT cells) from the bone marrow of intact mice on tumor cells and neovasculogenesis in mice with orthotopic Lewis lung carcinoma (LLC). Reprogramming of T cells was carried out using a MEK inhibitor and a PD-1 blocker; the targeting of rT cells to tumor cells was achieved by preincubation with LLC cell lysate. It was shown that the antitumor effect of rT cells was based on apoptosis of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!