The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes. Two distinct incorporation methods were employed for TiO direct nanoparticle incorporation and surface coating onto the CNT/PDA network. The membranes were comprehensively characterized using FTIR, SEM, EDS, contact angle measurements, and AFM analysis. The synthesized MCE@CNT/PDA/NP-TiO membrane exhibited super hydrophilicity with a water contact angle of 6.3° and underwater super oleophobicity with oil contact angles up to 172°. Membrane performance evaluation using a Nannochloropsis salina microalgae oil/water emulsion revealed excellent flux up to 9238 L m h bar and oil rejection as high as 98.6 % for the TiO-incorporated membranes. Additionally, these membranes demonstrated superior antifouling properties, maintaining over 90 % of initial flux even after five separation cycles. Incorporating TiO nanoparticles significantly enhanced the membrane's hydrophilicity, oleophobicity, antifouling capability, and stability under extreme pH conditions. The developed composite membranes show great potential for efficient and cost-effective separation of algal oil from microalgae cultivation systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.114491 | DOI Listing |
Environ Monit Assess
January 2025
School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia.
Bacterial membrane vesicles (MVs) are produced by all bacteria and contribute to numerous bacterial functions due to their ability to package and transfer bacterial cargo. In doing so, MVs have been shown to facilitate horizontal gene transfer, mediate antimicrobial activity, and promote biofilm formation. Uropathogenic is a pathogenic Gram-negative organism that persists in the urinary tract of its host due to its ability to form persistent, antibiotic-resistant biofilms.
View Article and Find Full Text PDFLangmuir
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!