A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TNG908 is a brain-penetrant, MTA-cooperative PRMT5 inhibitor developed for the treatment of MTAP-deleted cancers. | LitMetric

AI Article Synopsis

  • TNG908 is a clinical-stage inhibitor targeting PRMT5, utilizing a unique binding mechanism that exploits the loss of the MTAP gene commonly found in various cancers.
  • It specifically inhibits PRMT5 in cancer cells lacking MTAP, which occurs in 10-15% of human cancers and could lead to more effective treatments compared to earlier drugs.
  • Ongoing Phase I/II trials are investigating the effectiveness of TNG908 in patients with MTAP-null tumors, including glioblastoma, suggesting a promising future for this therapy in multiple cancer types, particularly those affecting the brain.

Article Abstract

TNG908 is a clinical stage PRMT5 inhibitor with an MTA-cooperative binding mechanism designed to leverage the synthetic lethal interaction between PRMT5 inhibition and MTAP deletion. MTAP deletion occurs in 10-15 % of all human cancer representing multiple histologies. MTA is a negative regulator of PRMT5 that accumulates as a result of MTAP deletion. In this study, we demonstrate that TNG908 selectively binds the PRMT5·MTA complex driving selective inhibition of PRMT5 in MTAP-null cancers, a mechanism that creates a large therapeutic index relative to first generation PRMT5 inhibitors that have alternative binding mechanisms that are not tumor-selective. Strong preclinical activity in multiple MTAP-deleted xenograft models, as well as demonstrated brain penetrance in preclinical models, support the potential for histology-agnostic clinical development of TNG908 in MTAP-deleted solid tumors, including CNS malignancies. TNG908 is being tested clinically in patients with MTAP-deleted tumors, including glioblastoma, in a Phase I/II clinical trial (NCT05275478).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tranon.2024.102264DOI Listing

Publication Analysis

Top Keywords

mtap deletion
12
prmt5 inhibitor
8
tumors including
8
prmt5
6
tng908
5
tng908 brain-penetrant
4
brain-penetrant mta-cooperative
4
mta-cooperative prmt5
4
inhibitor developed
4
developed treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!