Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A medical predicament has led to extensive drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), and the complexity of treatment has increased exponentially with the induction of osteomyelitis. In view of the severe situation and the potential of bacterial antivirulence strategies, this study focused on the key virulence factor caseinolytic protease (ClpP) of S. aureus to identify new strategies against MRSA-induced osteomyelitis. As the main protein "quality control" system of S. aureus, ClpP is indispensable for coordinating drug resistance, regulating adhesion, and acting on numerous virulence targets. Through fluorescence resonance energy transfer (FRET), we successfully identified isochlorogenic acid A (I-A), a polyphenol derivative, as an efficient inhibitor of ClpP, with an IC value of 24.89 μg/mL. Further analysis revealed that I-A can effectively inhibit the expression of virulence factors of MRSA and significantly reduce its adhesion to fibrinogen. Molecular docking revealed the potential binding sites of ClpP and I-A, namely, ILE-81, LYS-109, GLU-156, ARG-157, and GLY-184. At the cellular level, I-A can alleviate the death and increased secretion of inflammatory factors caused by MRSA USA300 in MC3T3-E1 cells. Moreover, it downregulates the activity of ClpP and reduces the response of bacteria to environmental stress. In vivo experiments have confirmed that I-A shows significant efficacy in both rat osteomyelitis models and Galleria mellonella infection models. This study provides new insights into the field of treatment strategies targeting virulence and provides a solid foundation for further exploration of the potential of I-A in combating drug-resistant S. aureus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2024.128042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!