A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Translation Initiation Factor eIF2Bα Regulates Development, Stress Response, Amylase Production, and Kojic Acid Synthesis in the Fungus Aspergillus oryzae. | LitMetric

The Translation Initiation Factor eIF2Bα Regulates Development, Stress Response, Amylase Production, and Kojic Acid Synthesis in the Fungus Aspergillus oryzae.

Curr Microbiol

Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.

Published: January 2025

Translation initiation, which involves numerous protein factors and coordinated control steps, represents the most complicated process during eukaryotic translation. However, the roles of eukaryotic translation initiation factor (eIF) in filamentous fungi are not well clarified. In this study, we investigated the function of eIF2Bα in Aspergillus oryzae, an industrially important filamentous fungus. The ΔeIF2Bα mutants showed slow colony growth and decreased conidia production, suggesting the critical roles of eIF2Bα in the growth and development of A. oryzae. In addition, the loss of eIF2Bα significantly impaired the ability to produce amylase and kojic acid, indicating the involvement of eIF2Bα in the amylase synthesis and secondary metabolite production. Interestingly, the elimination of eIF2Bα improved the tolerance of A. oryzae to diverse adverse stresses, including endoplasmic reticulum stress, oxidative stress, cell wall-perturbing stress, and cell membrane-damaging stress. Overall, our results indicate that eIF2Bα is a crucial regulator of growth, development, stress response, amylase production, and kojic acid synthesis in A. oryzae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-024-04051-7DOI Listing

Publication Analysis

Top Keywords

translation initiation
12
kojic acid
12
initiation factor
8
development stress
8
stress response
8
response amylase
8
amylase production
8
production kojic
8
acid synthesis
8
aspergillus oryzae
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!