Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs. Recent studies have shown that mRNAs in humans undergo a modification known as N4-acetylcytidine (ac4C) catalyzed by the enzyme N-acetyltransferase (NAT10), impacting mRNAs stability and translation. Here, we characterized the NAT10 homologue of L. mexicana, finding that the enzyme exhibits all the conserved acetyltransferase domains although failed to functionally complement the Kre33 mutant in Saccharomyces cerevisiae. We also discovered that LmexNAT10 is nuclear, and seems essential, as evidenced by unsuccessful attempts to obtain null mutant parasites. Phenotypic characterization of single-knockout parasites revealed that LmexNAT10 affects the multiplication of procyclic forms and the promastigote-amastigote differentiation. Additionally, in vivo infection studies using the invertebrate vector Lutzomyia longipalpis showed a delay in the parasite differentiation into metacyclics. Finally, we observed changes in the cell cycle progression and protein synthesis in the mutant parasites. Together, these results suggest that LmexNAT10 might be important for parasite differentiation, potentially by regulating ac4C levels.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.15338DOI Listing

Publication Analysis

Top Keywords

cell cycle
8
cycle progression
8
protein synthesis
8
mutant parasites
8
parasite differentiation
8
leishmania mexicana
4
mexicana n-acetyltransferease
4
n-acetyltransferease polysome
4
polysome formation
4
formation cell
4

Similar Publications

Introduction: The systemic immune-inflammation index (SII) has emerged as a promising prognostic marker in various malignancies. However, its prognostic significance in patients with small-cell lung cancer (SCLC) treated with immune checkpoint inhibitors (ICIs) remains unclear. In this study, we evaluated the prognostic impact of the SII in patients with SCLC after ICI use.

View Article and Find Full Text PDF

Background: Pancreatic adenocarcinoma (PAAD) is a common malignancy with a very low survival rate. More and more studies have shown that SPTAN1 may be involved in the development and progression of a variety of tumors, including rectal cancer, Pancreatic adenocarcinoma, etc., and may affect their prognosis.

View Article and Find Full Text PDF

The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.

View Article and Find Full Text PDF

Screened of long non-coding RNA related to wool development and fineness in Gansu alpine fine-wool sheep.

BMC Genomics

January 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.

Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.

View Article and Find Full Text PDF

The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!