A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contamination assessment and source identification of metals and metalloids in submicron road dust (PM) in Moscow Megacity. | LitMetric

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V. Relative to the upper continental crust, PM is highly enriched in Sb, Zn, Cd, Cu, W, Sn, Bi, Mo, Pb. In the courtyards, where contact between pollutants and the population is most frequent and occurs over an extended period, the level of PM pollution with MMs (from strong to extreme) is comparable to that on large roads. Source identification was conducted using correlations, elemental ratios, and absolute principal component analysis with multiple linear regression (APCA-MLR). In the traffic zone, non-exhaust and exhaust vehicle emissions contribute significantly to the MM concentrations in PM (especially for Bi, Sb, Sn, V, Fe, Cu, W, Mo); soil particles, abrasion of steel surfaces, industrial emissions, tire and road wear with carbonate dust resuspension contribute less. In the courtyards, the contribution of the road wear with carbonate dust resuspension and soil particles increases by up to 16% due to the poor condition of the road surface, frequent construction works, and large contact areas of roads with soils. In parks, the contribution of anthropogenic sources sharply decreases by 20-48% due to the increased soil resuspension rate. The spatial distribution pattern of MMs in submicron road dust should aid in the development of more effective road surface washing strategies, ultimately minimizing the risk to public health.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35791-5DOI Listing

Publication Analysis

Top Keywords

submicron road
16
road dust
16
source identification
8
metals metalloids
8
road
8
mms submicron
8
traffic zone
8
parks moscow
8
soil particles
8
road wear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!