Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR. The expression of CDR1AS increases after myocardial IR, and overexpression of CDR1AS detrimentally affects cardiac function, increases infarct area, promotes excessive autophagy, and blocks the flow of autophagy to induce autosis after IR. Conversely, knockdown of CDR1AS reversed the autophagy-related markers caused by IR, increasing cardiomyocyte activity, improving cardiac dysfunction and infarct area, and restoring the flow of autophagy. Further analysis of RNA sequencing and validation experiments revealed that CDR1AS aggravated autophagic damage, increased autophagosome accumulation, and promoted autosis by inhibiting the levels of LAMP2 and mTORC1 proteins. Additionally, RIP and pull-down assays showed that CDR1AS interacts with LAMP2 or mTORC1. First-time evidence reveals that circRNA CDR1AS regulates lysosomal membrane proteins by regulating the mTORC1/ULK1 pathway during myocardial IR-induced autosis. This suggests that maintaining moderate autophagy is a crucial part of the fight against myocardial IR damage. KEY MESSAGES: CDR1AS expression was significantly increased in myocardium following IR. CDR1AS can increase the occurrence of autosis after IR. CDR1AS reduces the phosphorylation of ULK1, promoting the formation of autophagosomes. CDR1AS binds to LAMP2 and blocks the autophagosome clearance pathway. The specific mechanism of CDR1AS regulating IR is achieved by regulating autosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-024-02511-yDOI Listing

Publication Analysis

Top Keywords

circrna cdr1as
12
cdr1as
12
autosis
8
infarct area
8
flow autophagy
8
lamp2 mtorc1
8
myocardial
5
autophagy
5
cdr1as promotes
4
cardiac
4

Similar Publications

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Sevoflurane (Sev) has a cardioprotective role in myocardial ischemia/reperfusion injury (MI/RI), but its mechanism has not been fully elucidated. This study aimed to investigate whether the circ_CDR1as/miR-671-5p/HMGA1 axis mediates the cardioprotective effect of Sev in MI/RI. Cardiomyocytes underwent hypoxia/reoxygenation (H/R) treatment was used to simulate MI/RI in vitro.

View Article and Find Full Text PDF

Circular RNA CDR1as/ciRS-7- a novel biomarker in solid tumors.

Front Oncol

November 2024

Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Introduction: Circular RNA CDR1as/ciRS-7 has been reported to function as an oncogenic regulator in various cancers. However, the prognostic value of CDR1as/ciRS-7 expression in solid tumors remains unclear. Herein, we conducted an updated meta-analysis to investigate the association between CDR1as/ciRS-7 expression and clinical outcomes in solid tumors.

View Article and Find Full Text PDF

CDR1as Deficiency Prevents Photoreceptor Degeneration by Regulating miR-7a-5p/α-syn/Parthanatos Pathway in Retinal Detachment.

Am J Pathol

November 2024

Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China. Electronic address:

Retinal detachment (RD) is the separation of the neural retina from the retinal pigment epithelium, with photoreceptor degeneration being a major cause of irreversible vision loss. Ischemia and hypoxia after RD decreased the level of miR-7a-5p (miR-7) and promoted the expression of its main target, α-synuclein (α-syn), which activated the parthanatos pathway and led to photoreceptor damage. Circular RNA CDR1as, which is an antisense transcript of cerebellar degeneration-related protein 1, functions as a "sponge" for miR-7, thereby regulating its abundance and activity.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) are identified as a novel family of endogenous RNA molecules through 'back-splicing' and covalently linked at the 5' and 3' ends. Emerging researches have demonstrated circRNAs are stable and abundant in exosomes called exosomal circRNAs (exo-circRNA).

Materials And Methods: We searched recent studies and references to summary the research progress of exosomal circRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!