How do people model the world's dynamics to guide mental simulation and evaluate choices? One prominent approach, the Successor Representation (SR), takes advantage of temporal abstraction of future states: by aggregating trajectory predictions over multiple timesteps, the brain can avoid the costs of iterative, multi-step mental simulation. Human behavior broadly shows signatures of such temporal abstraction, but finer-grained characterization of individuals' strategies and their dynamic adjustment remains an open question. We developed a task to measure SR usage during dynamic, trial-by-trial learning. Using this approach, we find that participants exhibit a mix of SR and model-based learning strategies that varies across individuals. Further, by dynamically manipulating the task contingencies within-subject to favor or disfavor temporal abstraction, we observe evidence of resource-rational reliance on the SR, which decreases when future states are less predictable. Our work adds to a growing body of research showing that the brain arbitrates between approximate decision strategies. The current study extends these ideas from simple habits into usage of more sophisticated approximate predictive models, and demonstrates that individuals dynamically adapt these in response to the predictability of their environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s44271-024-00169-3 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700031 | PMC |
Rev Med Chil
May 2024
Departamento Educación Biomédica, Facultad de Ciencias Biomédicas, Universidad Austral, Argentina.
Unlabelled: This research set out to identify and describe turning points in the lives of medical, nursing, and psychology students in a school of health sciences at a private university in Argentina. Turning points refer to unexpected events and situations in people's lives where it is possible to determine a change or transformation.
Aim: to explore turning points originating in the health sciences school.
Rev Med Chil
May 2024
Escuela de Kinesiología, Universidad de los Andes, Santiago, Chile.
Unlabelled: Biomechanical analysis of gait encompasses the measurement of spatiotemporal (STVs), kinematics, and kinetics variables. The behavior of these variables can provide clinicians and researchers with insights into the normality or alteration of this motor act across different populations. However, there is a lack of reference data for the Chilean population.
View Article and Find Full Text PDFNihon Yakurigaku Zasshi
January 2025
Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences.
Elucidating the neural mechanisms governing changes in individual animal behavior is a key goal in neuroscience. Such research has important implications for behavioral pharmacology and could lead to the development of treatments for psychiatric and neurological disorders. Given that the brain likely represents vast amounts of information through the combined activity of multiple neurons, studying these mechanisms requires the simultaneous recording of many neurons.
View Article and Find Full Text PDFCommun Psychol
January 2025
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
How do people model the world's dynamics to guide mental simulation and evaluate choices? One prominent approach, the Successor Representation (SR), takes advantage of temporal abstraction of future states: by aggregating trajectory predictions over multiple timesteps, the brain can avoid the costs of iterative, multi-step mental simulation. Human behavior broadly shows signatures of such temporal abstraction, but finer-grained characterization of individuals' strategies and their dynamic adjustment remains an open question. We developed a task to measure SR usage during dynamic, trial-by-trial learning.
View Article and Find Full Text PDFSci Rep
January 2025
Bates College Program in Neuroscience, Bates College, Lewiston, ME, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!