Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment. The results showed that Ag@MOF with a smaller particle size was prepared, approximately 5.5 nm. It successfully hindered the development of Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) by disrupting bacterial intracellular metabolism, generating ROS, compromising cell membrane integrity, and preventing biofilm formation. The Ag@MOF/Alg hydrogel displayed a characteristic interconnected three-dimensional structure, along with hydrophilic and antimicrobial effects. The Ag@MOF/Alg hydrogel we developed greatly enhances the invasion and migration capabilities of endothelial cells, as well as promoting angiogenesis. In mouse models of periodontitis induced by ligature, the extent of bone loss in the jaw and the presence of cells causing inflammation in the tissues surrounding the teeth were improved in the group treated with Ag@MOF/Alg hydrogel. The levels of TNF-α, IL-6, and IL-1β were significantly reduced compared to the control group. Conclusion: The experimental results prove that Ag@MOF/Alg hydrogel offers a new therapeutic approach for periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85123-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700186PMC

Publication Analysis

Top Keywords

ag@mof/alg hydrogel
16
ag-metal organic
8
sodium alginate
8
treatment periodontitis
8
alveolar bone
8
hydrogel
6
periodontitis
6
preparation ag-metal
4
organic frameworks-loaded
4
frameworks-loaded sodium
4

Similar Publications

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!