Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry. An in vitro HIC model was established using LPS-induced SV-HUC1 cells. PACAP knockdown was performed using siRNA. The expression of inflammatory markers (IL-6, IL-1β, TNF-α) and fibrotic markers (fibronectin 1, TGF-β1, collagen I) was evaluated via qPCR, Western blot, and ELISA. Cell migration and proliferation were analyzed using wound healing and CCK-8 assays. Transcriptomic profiling was conducted to identify differentially expressed genes (DEGs) and explore their functional significance.

Results: PACAP expression was significantly elevated in the bladder tissues of HIC patients. LPS stimulation of SV-HUC1 cells induced PACAP expression alongside increased levels of inflammatory cytokines, validating the inflammatory model. PACAP knockdown markedly suppressed IL-6, IL-1β, and TNF-α expression and attenuated LPS-induced fibrosis by reducing fibronectin 1, TGF-β1, and collagen I levels. Additionally, PACAP knockdown inhibited LPS-induced cell migration and proliferation, as evidenced by wound healing and CCK-8 assays. Transcriptomic analysis revealed distinct molecular alterations in HIC tissues, including PACAP upregulation, implicating it in HIC pathogenesis.

Conclusion: PACAP plays a pivotal role in the inflammatory and fibrotic pathways of HIC. PACAP knockdown alleviates LPS-induced pathological responses, highlighting its potential as a novel therapeutic target. Further research is warranted to investigate PACAP's precise mechanisms in HIC and its translational application in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00345-024-05429-9DOI Listing

Publication Analysis

Top Keywords

pacap knockdown
16
pacap expression
12
pacap
11
pacap hunner-type
8
hunner-type interstitial
8
interstitial cystitis
8
hic
8
bladder tissue
8
hic patients
8
sv-huc1 cells
8

Similar Publications

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

Chromaffin cells of the adrenal medulla have an important role in the sympathetic stress response. They secrete catecholamines and other hormones into the bloodstream upon stimulation by the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP causes a long-lasting and robust secretory response from chromaffin cells.

View Article and Find Full Text PDF

The pivotal role of PACAP/PAC1R signaling from the anterior insular cortex to the locus coeruleus on anxiety-related behaviors of mice.

Neurochem Int

November 2024

Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan. Electronic address:

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its specific receptor (PAC1R) are widely present in the central nervous system (CNS), and PACAP/PAC1R signaling has been implicated in anxiety-related behaviors. The locus coeruleus (LC), with its extensive noradrenergic (NA) projections throughout the CNS, is also implicated in anxiety. Although the LC exhibits a high expression of PAC1R, the precise role of PACAP/PAC1R signaling in the LC's involvement in anxiety remains unclear.

View Article and Find Full Text PDF

Obesity is a health malady that affects mental, physical, and social health. Pathology includes chronic imbalance between energy intake and expenditure, likely facilitated by dysregulation of the mesolimbic dopamine (DA) pathway. We explored the role of pituitary adenylate cyclase-activating polypeptide (PACAP) neurons in the hypothalamic ventromedial nucleus (VMN) and the PACAP-selective (PAC1) receptor in regulating hedonic feeding.

View Article and Find Full Text PDF

Hippocampal PACAP signaling activation triggers a rapid antidepressant response.

Mil Med Res

July 2024

Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China.

Background: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response.

Methods: The onset of antidepressant response was assessed through depression-related behavioral paradigms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!