Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome. Giant clams thrive in oligotrophic waters by forming a remarkable association with photosymbiotic dinoflagellate algae. Genome-based demographic inferences uncover a tight correlation between T. maxima global population change and major paleoclimate and habitat shifts, revealing how abiotic and biotic factors may dictate T. maxima microevolution. Comparative analyses reveal genomic features that may be symbiosis-driven, including expansion and contraction of immunity-related gene families and a large proportion of lineage-specific genes. Strikingly, about 70% of the genome is composed of repetitive elements, especially transposable elements, most likely resulting from a symbiosis-adapted immune system. This work greatly enhances our understanding of genomic drivers of symbiosis that underlie metazoan evolution and diversification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s42003-024-07423-8 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700175 | PMC |
Commun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFMar Environ Res
December 2024
Reef Life Survey Foundation, Hobart, 7000, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7000, Australia.
Following a recent dramatic increase in illegal fishing by Indonesian fishing vessels in Australian waters in 2022, we conducted an extensive survey of coral reef communities covering 33,000 m at Mermaid Reef Marine Park in the Rowley Shoals off north-western Australia in July 2022. Species richness of sea cucumbers was 13 species (three CITES listed) and 6 species of giant clams (all CITES listed). The most abundant sea cucumber species were the low or intermediate value, asexually reproducing species Holothuria atra and H.
View Article and Find Full Text PDFMar Biotechnol (NY)
December 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Biology, Duke University, Durham, NC, 27708, USA.
Many animals convergently evolved photosynthetic symbioses. In bivalves, giant clams (Cardiidae: Tridacninae) gape open to irradiate their symbionts, but heart cockles (Cardiidae: Fraginae) stay closed because sunlight passes through transparent windows in their shells. Here, we show that heart cockles (Corculum cardissa and spp.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address:
Triploid Pacific oyster Crassostrea gigas exhibits notable differences in fecundity, with the majority being sterile individuals, referred to as female β, which produce few oocytes, while a minority are fertile individuals, referred to as female α, which produce abundant oocytes. However, the molecular mechanisms underlying these differences in triploid fecundity remain poorly understood. CDC42 has been implicated in processes related to increased DNA damage and genomic instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!