Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs). The LFP data were acquired when eighteen PWP performed stepping in place, and the ground reaction forces were measured to track their weight shifts representing gait performance. By exhibiting a stronger correlation with weight shifts compared to the higher-correlation beta power from the two leads and outperforming other evaluated model designs, N2GNet effectively leverages a comprehensive frequency band, not limited to the beta range, to track gait performance solely from STN LFPs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41746-024-01364-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700158PMC

Publication Analysis

Top Keywords

gait performance
16
performance subthalamic
8
neural signals
8
parkinson's disease
8
stn lfps
8
weight shifts
8
n2gnet tracks
4
gait
4
tracks gait
4
performance
4

Similar Publications

Cerebral palsy (CP) is the most common neuromuscular disorder in children with no effective therapeutic methods. To examine CP, a large variety of methods and animal models was developed, the most popular are the hypoxic-ischemic (HI) injury and/or LPS injection in mice. In the presented work, HI and LPS were applied on the postnatal day 9 to humanized immunodeficiency mouse pups, thereupon 3 behavioral tests were performed in 8 weeks later.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinosis type 2 (CLN2) is a rapidly progressive neurodegenerative disorder leading to premature mortality. Ambulatory CLN2 patients typically receive standard of care treatment through biweekly intracerebroventricular (ICV) enzyme replacement therapy (ERT) involving recombinant human tripeptidyl peptidase 1, known as cerliponase alfa (Brineura, Biomarin Pharmaceuticals). This study longitudinally assessed the impact of ICV cerliponase alfa ERT on gait, and postural control across a two-year span in two siblings diagnosed with atypical CLN2 disease.

View Article and Find Full Text PDF

Prevalence and Associated Factors of Sarcopenia in Thai Rheumatoid Arthritis Patients: A Cross-Sectional Study.

J Clin Rheumatol

January 2025

From the Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background/objectives: Sarcopenia associates with poor health-related quality of life (HRQoL). This study aimed to determine prevalence and factors associated with sarcopenia in rheumatoid arthritis (RA) patients. The HRQoL between RA patients with and without sarcopenia also was compared.

View Article and Find Full Text PDF

Intradural extramedullary bronchogenic cysts (IEBCs) are exceedingly rare congenital entities, composed of respiratory epithelial cells derived from the anomalous development of the embryonic foregut. Due to their exceptionally low morbidity, only limited cases are available. Consequently, the clinical features and optimal therapeutic approach remain poorly understood.

View Article and Find Full Text PDF

A 41-year-old man with a history of obesity, hypertension, and smoking suffered from numbness and weakness in both lower limbs. He was diagnosed with ossification of the posterior longitudinal ligament and ligamentum flavum in the cervical and thoracic spine by X-rays, CT, and MRI. The patient underwent laminectomies at T2 and T3 levels, along with posterior fusion from T1 to T4, to address an upper thoracic spine lesion causing sensory deficits up to T5 and gait disturbances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!