Supercontinuum generation in scintillator crystals.

Sci Rep

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

Published: January 2025

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics. The measured cut-off wavelengths at the short-wavelength side are in line with the general trend of blue-shifted spectral broadening on the bandgap of nonlinear material. All the nonlinear materials produced reasonable red-shifted spectral broadenings under conditions of optimal pump pulse energies, with the largest red-shift exceeding 2000 nm measured in GGG crystal. Our results revealed that GGG and BGO (which also had the lowest supercontinuum generation threshold) offer durable, optical damage-free performance at a laser repetition rate of 200 kHz, suggesting that these materials are good alternatives to YAG and KGW for low threshold, high average power supercontinuum generation in the near- and short-wave infrared spectral ranges. We also demonstrated that scintillating properties of bulk materials could be readily studied in the filamentation regime, via multiphoton excitation using near-infrared femtosecond laser pulses.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84178-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700137PMC

Publication Analysis

Top Keywords

supercontinuum generation
24
scintillator crystals
8
red-shifted spectral
8
pump pulse
8
pulse energies
8
spectral broadening
8
supercontinuum
6
generation
5
spectral
5
generation scintillator
4

Similar Publications

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Supercontinuum generation in optical fiber involves complex nonlinear dynamics, making optimization challenging, and typically relying on trial-and-error or extensive numerical simulations. Machine learning and metaheuristic algorithms offer more efficient optimization approaches. We report here an experimental study of supercontinuum spectral shaping by tuning the phase of the input pulses, different optimization approaches including a genetic algorithm, particle swarm optimizer, and simulated annealing.

View Article and Find Full Text PDF

We demonstrate that amplitude modulation of a high-peak-power femtosecond laser pulse allows to change fundamentally the frequency-angular structure (FAS) of the supercontinuum formed during the filamentation in both molecular and atomic gases. Particularly, modulation with a 4-hole mask forms an inverted pattern of conical emission (CE) with its predominance in the Stokes wing of the pulse spectrum. We explain this phenomenon as a joint effect of self-phase modulation and temporal pulse splitting of interfering beamlets formed by the modulating mask.

View Article and Find Full Text PDF

Nonlinear photonics on integrated platforms.

Nanophotonics

August 2024

School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Nonlinear photonics has unveiled new avenues for applications in metrology, spectroscopy, and optical communications. Recently, there has been a surge of interest in integrated platforms, attributed to their fundamental benefits, including compatibility with complementary metal-oxide semiconductor (CMOS) processes, reduced power consumption, compactness, and cost-effectiveness. This paper provides a comprehensive review of the key nonlinear effects and material properties utilized in integrated platforms.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines how the shape factor (k) influences the mode properties of graded-index ring-core fibers (GIRCF), specifically focusing on a design with 50 mol% Ge-doping and a shape factor of 2.
  • The research demonstrates that this GIRCF configuration can produce supercontinuum light with orbital angular momentum (OAM) modes, featuring a flat dispersion with slight variations over a wide wavelength range of 750 to 3055 nm.
  • The introduction of a graded refractive index profile (RIP) enhances ring-core fiber design by promoting flat dispersion, minimizing spin-orbit coupling, and enabling better mode purity and broader spectral coverage.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!