Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

Published: January 2025

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality. Additionally, Pue significantly alleviated histopathological damage in MIRI-treated myocardium, as evidenced by HE staining and TUNEL assay. In vitro, Pue pretreatment significantly alleviated A/R-induced damage by decreasing LDH levels, increasing cellular activity, inhibiting autophagic lysosomal overactivation, inhibiting oxidative stress (ROS, LIP ROS, MDA), increasing antioxidant defense (SOD, GSH-Px), and increasing P62 protein expression while decreasing LC3II/I ratio. Furthermore, Pue inhibited apoptosis and maintained mitochondrial homeostasis by up-regulating the expression of Hairy and Enhancer of Split-1 (HES1) protein, which was crucial for its cardioprotective effects. Nevertheless, the cardioprotective efficacy of Pue pretreatment was negated via the knockdown of HES1 protein expression via pAD/HES1-shRNA transfection. In conclusion, Pue effectively ameliorated HES1-mediated MIRI-induced autophagy, apoptosis, and mitochondrial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84808-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700218PMC

Publication Analysis

Top Keywords

pue pretreatment
12
autophagy apoptosis
8
protein expression
8
hes1 protein
8
pue
7
puerarin pretreatment
4
pretreatment protection
4
protection myocardial
4
myocardial ischemia/reperfusion
4
ischemia/reperfusion injury
4

Similar Publications

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1.

J Cell Mol Med

December 2024

Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.

View Article and Find Full Text PDF

Puerarin (Pue) has significant antioxidant and anti-inflammatory properties. This work was designed to clarify and investigate the potential mechanisms of Pue in atherosclerosis (AS) progression. In vivo, acrolein (Acr) was inhaled through drinking water to construct AS model.

View Article and Find Full Text PDF

Puerarin (Pue), a flavonoid compound, possesses cytoprotective effects and LPS has been reported to induce renal inflammatory injury in bovine. However, whether Pue inhibits lipopolysaccharide (LPS)-induced inflammatory damage of bovine kidney cells remains unknown. Based on an in vitro model with Madin-Darby bovine kidney (MDBK) cell line, it has found that Pue attenuated LPS-induced damage of MDBK cells, as evidenced by cell viability and lactic dehydrogenase (LDH) release rescued by Pue (P < 0.

View Article and Find Full Text PDF

Anti-Neuroinflammatory Potential of a () Ethanolic Extract.

Antioxidants (Basel)

January 2023

Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain.

Microglia, the resident macrophage-like population in the CNS, plays an important role in the pathogenesis of many neurodegenerative disorders. is known to produce different metabolites with anti-inflammatory, anti-oxidant and analgesic properties. Although the species is popularly used for the treatment of different types of inflammatory processes, its biological effects on neuroinflammation have not yet been addressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!