Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance. The proposed system includes two balancing strategies: a charging balance that redistributes excess charge from high-SOC cells to maximize capacity, and a discharging balance that addresses low-SOC cells to extend discharge duration. Experimental results confirm that this method effectively reduces SOC disparities, enhancing both charging and discharging capacities. Additionally, to accurately predict battery lifespan and remaining useful life (RUL), seven machine learning models are evaluated using R-squared (R) and Mean Absolute Error (MAE) metrics. Among these, k-nearest Neighbors and Random Forest models deliver the highest accuracy, achieving R values of 0.996 and above with low MAE, demonstrating strong predictive capability. The integration of active balancing and RUL prediction enables a feedback loop where balanced SOC levels promote battery health, and RUL predictions inform optimal balancing strategies. This comprehensive approach advances EV battery management, enhancing lifespan and reliability through proactive balancing and predictive insights.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-82778-w | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700096 | PMC |
Appl Neuropsychol Adult
January 2025
Jersey Shore University Medical Center, Neuropsychology Rehabilitation Services, Lifespan, Trinton Falls, NJ, USA.
In the field of neuropsychology, the accuracy of neuropsychological data interpretation has significant implications for both research and clinical practice. The process of test interpretation is fraught with challenges, and a lack of consensus among neuropsychologists can lead to discrepancies in assessment outcomes. Smith et al.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
As a leading candidate for high-voltage, cobalt-free cathodes, spinel LiNiMnO (LNMO) oxide is highly attractive for next-generation lithium-ion batteries. However, the instability of cation-oxygen bonds (especially Mn-O) and the adverse two-phase transition of LNMO result in rapid crystal collapse during cycling, thus limiting its practical deployment. To address these issues, herein we exploit the differences in miscibility between dopants and the spinel matrix to embed high-entropy doped microregions (HEDRs, 5-15 nm in size) within the spinel.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China. Electronic address:
Sodium metal is heralded as a premier anode candidate poised to supplant lithium in next-generation rechargeable batteries due to its abundant availability, cost-effectiveness, and superior energy density. Due to the highly reactive nature of metallic sodium, an unstable solid electrolyte interphase (SEI) forms spontaneously on the Na metal anode. This instability leads to non-uniform sodium deposition during cycling, promoting dendrite growth and the accumulation of "dead" sodium.
View Article and Find Full Text PDFSci Rep
January 2025
Electronics and Communication Engineering Dept. Faculty of Engineering, Horus University, New Damietta, Egypt.
Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Tsinghua Shenzhen International Graduate School, CHINA.
The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!