In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors. The sensor exhibits a cyan-to-yellow shift when exposed to HCl vapor and can visually differentiate various acidic vapors (HF, HBr, and HI) through unique color changes. Furthermore, the compatibility of the MOF-based sensor with multiple metal ions having atomic-level dispersion broadens its discrimination range, enabling the identification of six different colorless acid vapors within a single sensor domain. Additionally, by incorporating a flexible polymer, the MOF-808-EDTA-Cu has been successfully processed into a portable miniaturized acid sensor, exhibiting distinct color changes that can be easily monitored by the naked eye and camera sensors. This provides experimental validation as a practical sensor capable of on-site 24-hour monitoring in the real world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700211 | PMC |
http://dx.doi.org/10.1038/s41467-024-55774-x | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The chemical reactivity of glass surfaces is often studied with elemental analysis techniques, and although such characterization methods provide insights on compositional changes from exposure to specific chemical conditions, molecule-specific chemical reactions are not determined unambiguously. This study demonstrates the use of reflection-absorption infrared spectroscopy (RAIRS) to detect molecular species on alkali-free boroaluminosilicate and alkali aluminosilicate glasses, using acetic acid vapor as a model reactant to probe reaction sites at the surface with or without pretreatment by aqueous solutions of varied pH. With the assistance of the theoretical calculation of spectral changes based on refractive indices of bulk materials, it was possible to identify the molecular species being removed and produced at the glass surface.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China. Electronic address:
Clinical benefits of immunotherapy in colorectal cancer (CRC) are limited due to the low immunogenicity and immunosuppressive tumor microenvironment. Fusobacterium nucleatum (Fn) is discovered to colonize CRC tumors and dampen immunotherapy by fostering an immunosuppressive TME. Herein, a controllable "Shielding-deshielding" N-acetylgalactosamine (GalNAc)-derived photothermal nanotherapeutic is developed to mediate cascade targeting toward tumor and intratumoral Fn for enhanced photothermal-immunotherapy.
View Article and Find Full Text PDFActa Biomater
January 2025
Hainan Cancer Center and Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China. Electronic address:
In situ vaccine (ISV) can activate the anti-tumor immune system by inducing immunogenic cell death (ICD) at the tumor site. However, the development of tumor ISV still faces challenges due to insufficient tumor antigens released by tumor cells and the existence of tumor immunosuppressive microenvironment (TIME). Targeting the STING pathway has been reported to enhance the adjuvant effects of in situ tumor vaccines by initiating innate immunity.
View Article and Find Full Text PDFJ Food Sci
January 2025
Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
Ionic liquids (ILs) are widely used "green solvent" as they have a low vapor pressure and can replace volatile solvents in industry. However, ILs are difficult to biodegrade and are potentially harmful to the environment. This study, herein, investigated the toxicity of three imidazole ILs ([CMIM]Cl, [CMIM]Br, and [CDMIM]Br) towards soil microorganisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!